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n-dimensional space where recovery may be an illusion due to the incidental
overlap of the oscillation trajectories occurring along a few axes. We now
use the new visualization technique of space-time worms to see the trajectories
of the ecosystems through n-dimensional ecosystem space. The dynamics appear
to have little regularity and resemble chaotic systems in the lack of repeatability
and the importance of initial conditions. The dynamics of ecosystems may be
more closely related in terms of basic dynamics to such phenomena as turbulence
and weather formation. The implications for risk assessment and resource
management are being examined.
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Program Summary 92-93

A common assumption in environmental toxicology is that after the initial impact, ecosystems

recover to resemble the control state. This assumption may be based more on our inability to observe an
ecosystem with sufficient resolution to detect differences, than reality. Recent findings of complex and
perhaps chaotic dynamics in two relatively simple types of microcosms demonstrate that complex
dynamics and non-equilibrium systems are the rule rather than the exception.

In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms,

multivariate analysis and clustering methods derived from artificial intelligence research was able to
differentiate oscillations that separate the treatments from the reference group, followed by what would
normally appear as recovery, followed by another separation into treatment groups as distinct from the
reference treatment. The explanation may be that the oscillations are the result of the intrinsic chaotic

behavior of population interactions, of which the alteration of detrital quality is but one of many. In fact,
preliminary data indicate that material derived from the jet fuel may be released back into the water

column due to the decay or organic material. The initial impact of the toxicant re-set the dosed
communities into different regions of the n-dimensional sple where recovery may be an illusion due to
the incidental overlap of the oscillation trajectories occurring along a few axes.

We now use the new visualization technique of space-time worms to see the trajectories of the
ecosystems through n-dimensional ecosystem space. The dynamics appear to have little regularity and
resemble chaotic systems in the lack of repeatability and the importance of initial conditions. The

dynamics of ecosystems may be more closely related in terms of basic dyrnmics to such phenomena as
turbulence and weather formation. The implications for risk assessment and resource management are

being examined.

Program Objectives

The principal objective of this project is to examine the patterns in toxicity data from experiments

using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique
developed by Matthews and Heame (1991), for our primary pattern analyses. NMC has been shown to
work well on a variety of ecological data sets (Matthews and Heame, 1991). The results from the NMC

analyses are then compared with those from other standard multivariate techniques to compare the utility

of each technique for analyzing aquatic toxicity data.

Specific objectives are:

Conduct one series of toxicity tests using the SAM and Mixed Flask Culture (MFC) protocols with
3 complex toxicants such as the water soluble fraction of JP-4, shale derived JP-4, and JP-8.

For at least one of the complex toxicants, conduct a second complete series of toxicity tests
(SAM and MFC) to compare similarities between parallel tests.
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Examine the SAM and MFC complex toxicant data using NMC, linear discriminant analysis,
correspondence analysis, and metric clustering (k-means using Euclidean and cosine
distances).

Examine existing SAM data from experiments conducted previously for copper sulfate, brass, and
graphite using NMC, linear discriminant analysis, correspondence analysis, and metric
clustering.

Describe a protocol that can be used for analyzing multispecies toxicity data. This protocol will
Incorporate a discussion of the advantages and limitations of the different multivariate analytical
tools that were tested during this project.

Status of the Research

The results from the first and second years of the research program have been presented at the

1992 Annual Meeting of the Society for Environmental Toxicology and Chemistry (SETAC) in Cincinnati,

the 1993 First SETAC World Congress in Lisbon, Portugal, and the recent Third Annual Symposium for

Environmental Toxicology and Risk Assessment sponsored by Committee E47 of the American Society

for Testing and Materials (ASTM) in Atlanta. In addition to these presentations, we have also presented

our research results during several invited seminars, including the Keynote Address , "Ecosystem

Dynamics: Wormspace, Chaos and the Implications for Ecological Risk Assessment, USEPA Regional

Risk Assessment Annual Meeting, May 4,1993, Atlanta, GA.

Since September 1992, we have also prepared and submitted seven manuscripts, three of which

are now in press. We have also sent out over 50 copies of these papers to various people interested in

this research. Copies of these papers are presented in Appendix A.

In year two the specific accomplishments met included:
0 Completing SAM experiments using Jet-A, JP-4 and the initial data collection for the JP-8

experiment.

* Completing MFC microcosm experiments using the standard protocol for the toxicants Jet-A and
JP-4.

0 An extensive investigation into the degradation of the WSF materials in the SAM and MFC
systems has led to the preliminary conclusion that the biological communities may release these
materials into the media during decomposition, redosing the system.

a Completing two sets of MFC experiments modified to explore specific questions as to the design
of multispecies toxicity tests.

0 Derivation of a novel method to examine ecological dynamics at the community and ecosystem
level, the space time worms.

a Incorporation of nonlinear dynamics and chaos into the interpretation of ecosystem dynamics due
to anthropogenic inputs.

* Improvements to the RIFFLE program, providing a graphical user Interface so that nonmetric
clustering and iks association analysis can be accomplished without extensive programming.

a Application of these results to ecological risk assessment, Including the conclusion that risk
assessments are more akin to weather forecasts, that Is forecasts with specified time limits that
deal with a chaotic system.
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Below is a more detailed summary of our research program from June 1, 1992 to May 31, 1993.

Overview of the Methodology

Toxiants. Jet-A, JP-4 and JP-8 are the toxicants for these studies. The Jet-A has been obtained

from a commercial supplier, Chevron. The military fuels have been obtained from the U.S. Air Force

Laboratories at Wright-Patterson AFB and are labeled as to lot number. Records and archival samples

are maintained by the Quality Assurance program of the Institute.

Microcosm Protocol. The 64 day SAM protocol as developed by Taub (Taub et al., 1988)

consists of ten algal, four invertebrate and one bacterial species introduced into 3 L of sterile defined

medium. Test containers are 4 L glass jars. An autoclaved sediment consisting of 200 g silica sand and

0.5 g of ground chitin are added to the already autoclaved jar and media. All complex toxicants are tested

by removing 450 m! of media and organisms at the end of the 7 day acclimation period and adding

appropriate amounts of jet fuel WSF and clean media that results in the final concentrations of toxicant.

Concentrations for the tests run to date are 0. 1, 5 and 15 percent WSF. Numbers of organisms,

dissolved oxygen (DO) and pH are determined twice weekly. Nutrients (nitrate, nitrite, ammonia, and

phosphate) are sampled and measured twice weekly for the first four weeks, then only once weekly

thereafter. A summary of the SAM methodology is presented in Table 1.

Mixed Flask Culture. The MFC microcosms are smaller systems of approximately 1 L and are

inoculated with 50 ml of a stock culture originally derived from a natural system. The inoculum will be

derived from the pond that is on the property of the Shannon Point Marine Center of WWU. Sand is also

added to enhance the benthic populations included in the inoculum. Other variables to be measured

include pH, DO so that a P/R ratio can be obtained, algae, total zooplankton, and ciliate protozoa.

Modifications to the original protocol have been made as part of additional studies conducted by

R. Sandberg and S. Rodgers. In a study determining the applicability of the MFC when used to examine

sediment contamination, R. Sandberg dosed the MFC by injecting jet fuel into the s"diment. S. Rodgers

is attempting to determine the importance of system complexity and similarity in the reproduction of

results in the MFC system. In one set of experiments, only the SAM organisms were added by the normal

cross inoculation to attempt to ensure homogeneity between replicates was performed. In a second set of

experiments the SAM organisms were used but no cross inoculation. Summaries of these experiments

are presented below. A summary of the NMC methodology is presented in Table 2.
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Table 1. Summary of Test Conditions for a Typical Standardized Aquatic Microcosm
ASTM E 1366 - 91

ORGANISMS
Type and number of test
organisms per chamber: AlgaL(added on Day 0 at initial concentration of 103 cells for

each algae species):
Anabaena cylindrica, Ankistrodesmus sp., Chlamydomonas
reinhard 90, Chlorella vulgaris, Lyngbya sp. Nitzschia kutzigiana
(Diatom 216), Scenedesmus obliquus, Selenastrum
capficomutum, Stigeoclonium sp., and Ulothrix sp.
Anim~aIs(added on Day 4 at the initial numbers
indicated in parentheses):
Daphnia magna (16/microcosm),
Hyalella azteca (12/microcosm),
Cypridopsis sp. or Cypninotus sp. (ostracod) (6/microcosm),
Hypotrichs [protozoa] (0.1/mL) (optional),
and Philodina sp. (rotifer) (0.03/mL)

EXPERIMENTAL DESIGN
Test vessel type and size: One-gallon (3.8 L) glass jars are recommended; soft glass is

satisfactory if new containers are used; measurements should be
16.0 cm wide at the shoulder, 25 cm tall with 10.6 cm openings

Medium volume: 500 mL added to each container

Number of replicates x concentrations 6x4

Reinoculation: Once per week add one drop (circa 0.05 mL) to each microcosm
from a mix of the ten species - 5 x 102 cells of each alga added
per microcosm

Addition of test materials: Add material on Day 7; test material may be added

biweekly or weekly after sampling

Sampling frequency: 2 times each week until end of test

PHYSICAL AND CHEMICAL PARAMETERS
Temperature: Incubator or temperature controlled room is required providing an

environment 20 to 259C with minimal dimensions of 2.6 by 0.85
by 0.8 m high

Light intensity: 80 IE mi2 photosynthetically active radiation s-1 (850 to 1000 fc)

Photoperiod: 12 h light / 12 h dark

Microcosm medium: Medium T82MV adjusted to pH 7

Sediment: Composed of silica sand (200 g). ground, crude chitin (0.5). and
celhulose powder (0.5 g) added to each container

Typical Endpoints: Population dynamics of each species, chemical-physical
parameters, nutrients, diversity, predator-prey interactions,
chemical tate.
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Table 2. Summary of Test Conditions for Mixed Flask Culture Microcosms

TEST TYPE Multispecies

ORGANISMS

Number and type
of organism: a) two species of single-celled green algae or diatoms

b) one species of filamentous green alga
c) one species of nitrogen - fixing blue - green alga
d) one grazing macroinvertebrate
e) one benthic, detritus - feeding macroinvertebrate
f) bacteria and protozoa species

EXPERIMENTAL DESIGN

Test vessel type and size: 1 L beakers covered with a large petri dish
Volume/Mass: 50 mL of acid washed sand sediment and 900 mL of

Taub # 82 medium [201, into which 50 mL of inoculum
was introduced

Number of groups: 4

Number of replicate chambers
per group: 5

Reinoculation: 10 mL of stock community each week

Test duration: 12 - 18 weeks
Allow to mature 6 weeks prior to treatment; follow 6 to
12 weeks after exposure

PHYSICAL AND CHEMICAL PARAMETERS

Temperature: 200C

Photoperiod: 12 h light /12 h dark

Endpoint: Oxygen content, algal densities, microbial activity,

respiratory activity, biomass, protozoan populations

Samlinog and Data Collection Procedures. All microcosm data are recorded onto a Macintosh

Classic, hard copy printed, checked for accuracy and archived. The information is then fed into the

Macintosh compatible data analysis system. Parameters calculated included the DO, DO gain and loss,

nutrient concentrations, ", photosynthesis/respiration ratio (P/R), pH, algal species diversity, daphnid

fecindity, algal bilovolume and biovolume of available algae. The statistical significance of each of these

parameters compared to the controls are computed for each sampling day using the methodology of

Conquest and Taub (1989).
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Gas Chromatography of WSF. This protocol utilizes a Tekmar LSC 2000 Purg3 and Trap (P&T)

concentrator system in tandem with a Hewlett Packard 5890A Gas Chromatograph with a Flame

Ionization Detector (FID) (ASTM D3710, 1988; ASTM D2887, 1988; Westendorf, 1986). Instrument

blanks and deionized distilled water blanks are used to verify the P&T and GC columns cleanliness prior

to analysis of samples. A five mL sample is injected into a five milliliter sparger, purged with pre-purified

nitrogen gas for eleven minutes and dry purged for four minutes. Volatile hydrocarbons, purged from the

sample and collected on the Tenax/Silica Gel column, are desorbed at 180"C directly onto the gas

chromatograph SPB-5, 30m x 0.53 mm ID 1.5pro film, fused silica capillary column. The column, at 350C,

is held at that temperature for two minutes, increased to 2250C at 120C/min and held at that temperature

for five minutes. A Spectra-Physics 4290 Integrator records the FID signal output of the volatile

hydrocarbons that have been separated and eluted from the column by molecular weight.

Identification and Quantification of GC fractions. Qualitative identification of some components in

the water soluble fraction (WSF) of the JP-4 fuel, used as the toxicant in the microcosm test, were

determined using a Simulated Distillation (SIMDIS) Calibration Mixture. The ASTM Method D3710

Qualitative Calibrat" in Mixture is the standard test method for determining the Boiling Range Distribution

of Gasoline and Gasoline Fractions by Gas Chromatography. This mixture was used as a calibration

standard to determine the retention times for each known component in the mixture against wh•:h

unknown components, in the WSF of the Jet fuel mixture, were compared and identified.

Quantitative estimates of some components of the WSF were made by comparing sample

chromatographs to certified n-paraffin and n-naphtha chromatograph standards, prepared and analyzed

under the same P&T/GC conditions.

Multivariate Technigues-Nonmetric Clustering. In the research described above, three

multivariate significance tests were used. Two of them were based on th( ratio of multivariate metric

distances within treatment groups vs. between treatment groups. One of these is calculated using

Euclidean distance and the other with cosine of vectors distance (Good, 1982; Smith etal., 1990). The

third test used nonmetric clustering and association analysis (Matthews and Matthews, 1990). in the

microcosm tests there were four treatment groups with six replicates, giving a total of 24. This example is

used to illustrate the applications in the derivations that follow.
Treating a sample on a given day as a vector of values, 1 = (x1 .... X17), with one value for each

of the measured biotic parameters, allows multivariate distance functions to be computed.
Euclidean distance between two sample points i and Y is computed as
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The cosine of the vector distance between the points i and ý is computed as

SxiYi

21:

Subtracting the cosine from one yields a distance measure, rather than a similarity measure, with the

measure increasing as the points get farther from each other.

The within-between ratio test used a complete matrix of point-to-point distance (either Euclidean

or cosine) values. For each sampling date, one sample point i was obtained fr,.n each of six replicates

in the four treatment groups, giving a 24 x 24 matrix of distances. After the distances were computed, the

ratio of the average within grop metric (V) to the average between group metric (B) was computed

(W/B). If the points in a given treatment group are closer to each other, on average, than they are to

points in a different treatment group, then this ratio will be small. The significance of the ratio is estimated

with an approximate randomization test (Noreen, 1989). This test is based on the fact that, under the null

hypothesis, assignment of points to treatment groups is random, the treatment having no effect. The test,

accordingly, randomly assigns each of the replicate points to group,, and recomputes the WIB ratio, a

large number of times (500 in our tests). If the null hypothesis is false, this randomly derived ratio will

(probably) be larger than the WiD ratio obtained from the actual treatment groups. By taking a large

number of random reassignments, a valid estimate of the probability under the null hypothesis is obtained

as (n+1)1(500+1), where n is the number of times a ratio less than or equal to the actual ratio was

obtained (Noreen, 1989).

In the clustering association test, the data are first clustered independently of the treatment group,

using nonmetric clustering and the computer program RIFFLE (Matthews and Heame, 1991). Because

the RIFFLE analysis is naive to treatment group, the clusters may, or may not correspond to treatment

effects. To evaluate whether the clusters were related to treatment groups, whenever the clustering

procedure produced four clusters for the sample points, the association between clusters and treatment

groups was measured in a 4 x 4 contingency table, each point in treatment group i and cluster j being

counted as a point in frequency cell ij. Significance of the association in the table was then measured with

Pearson's X2 test, defined as

n,,
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where N#jis the actual cell count and nqijs the expected cell frequency, obtained from the row and column

marginal totals N+j and Ni+ as

n,_ N~jNj+
N

where N = 24 is the total cell count (Press et al., 1990), and a standard procedure for computing the

significance (probability) of X2 , taken from Press et al. (1990).

Summary of Results to May 31, 1993

Summary of the Jet-A and JP-4 SAM experiments

Persistence of the fuels. In the case of both WSFs, within three weeks after dosing the original

material had been volitilized or degraded. In the case of JP-4, benzene, 2,4 dimethylpentane,

ethylbenzene, 2-methylpentane, 2-methylpropane, o-xylene and toluene, were tracked using GC analysis

during the course of the SAM experiment. After week three, only 2-methylpentane and 2-methylpropane

are detectable. Since only the 2-methylpropane is present 672 hours after dosing, this material may be

the final biodegradative product of the absorbed fraction of the WSF, and is being investigated in more

detail.

Comarison of A12al Population Dynamics-Highest Treatment. These area graphs (Fig. 1) show

the contribution of each algal species to the algal assemblage for the highest treatment concentration for

each experiment. In the Jet-A treatment the algal populations were highest, reflecting the increased

toxicity of the Jet-A to the daphnid populations. In both experiments however, an algal bloom was

observed during the first 30 days of the experiment. Al the end of the experiment the numbers and

composition of the algal assemblage were similar, although the proportions of the species making up the

assemblage had some differences. Chiorella seemed to be a greater constituent of the ommunity in the

JP-4 experiment.

Daphnid Population Dynamics. The most direct effect of the jet fuel upon the population dynamics

of the daphnid populations was the delay in daphnid reproduction (Fig. 2). Peaks were delayed in the

Treatment 4 microcosms In both instances. Daphnids were very important In determining the clusters in

the early part of each experiment but not as Important later. In both experiments two peaks of daphnid

populations are observed. The first reflects the presence of the toxicant, the second occurs similarly in

the dosed and not dosed systems. Error bars are not shown for clarity.

Ostracod Population Dynamics. Ostracod populations did not increase until late in each

experiment (Fig. 3). In the Jet-A experiment (A), the numbers started an Increase between days 40 and

45.
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The experiment using JP-4 as a toxicant (B) did not see the increase in ostracods until between

days 50-55, approximately ten days later. Consequently, the total numbers of ostracods observed were

not as high In the JP-4 microcosms. Note that the order of densities in the Jet-A experiment followed a

dose response pattern, as did the JP-4 experiment, even with the lower total numbers. Conventional

analysis did not demonstrate significance, however nonmetric clustering did indicate the importance of the

ostracods in determining clusters in both sets of microcosm experiments.
Philodina Population Dynamics. Philodina did not become prevalent in the microcosms until the

second halt of the experiment. One of the major problems was the inherent variability in the sampling and
in the replicates. Organisms that reproduce rapidly can show large differences in population sizes during

the course of a sampling day. Although, in the later stages of the microcosm experiments the dosed

systems had a generally larger number of the rotifers, the results were not statistically significant using

conventional IND plots. However, using cluster analysis, Philodina were also determined to be an
important variable in defining clusters. This held true for both the Jet-A and JP-4 experiments.

Comarisons of oH dynamics of the Jet-A and JP-4 Experiments. Unlike the biotic variables, pH

did reflect some of the oscillations detected by the cluster analysis (Fig. 4). In both the Jet-A and the JP-4

experiments the highest concentrations demonstrated a statistically significant difference, determined by
the interval of non-significant difference during the first 30 days of the experiment. The second oscillation,

between days 45 and 50, is not as clear since only one sampling date demonstrated the statistically

significant difference. Type II error becomes a concern with so many comparisons, even with the

corrections incorporated into the IND plots.
Photosynthesis/Resoiration Ratio. The photosynthesis/respiration ratio reflects the oscillations

seen in pH and the clustering analysis for the first 30 days and then only for the Jet-A water soluble

fraction. In the Jet-A experiment, a second deviation from the IND plot was noted in the period

corresponding to the second oscillation, but the result is difficult to distinguish from a type II error. In the

JP-4 experiment, the IND plots are large, reflecting the variance in those sampling days. As an

"emergent property, it is not clear if the P/R ratio provides any more information in this experiment than

the clustering based upon the biotic components.
Oscillations In Comrnunitv Dynamics Observed in both the Jet-A and the JP-4 Exoerients. The

Jet-A and the JP-4 SAM experiments both displayed a series of oscillations; revealed by the three

clustering techniques employed in the analysis (Fig. 5). The first oscillation, as defined by Cosine

Distance common to each experiment, is due to the interaction of the daphnid population and the algae.

The result is statistically significant, as determined by the goodness-of-fit confidence level, graphed by

day in Fig. 6. In both experiments, the oscillation is within the first 30 days of the SAM time-line.

Interestingly, the magnitude of the first oscillation, as determined by Cosine Distance, is less in the JP-4

experiment, possibly reflecting the reduced acute and chronic toxicity of the mixture.
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A second series of oscillations, as measured by Cosine Distance, occur in the last thirty days of

each experiment. Again the oscillations are statistically significant.

The participants in the community that contribute to these oscillations are slightly different judging

by the table of important variables (Table 3). Unfortunately, the length of the SAM protocol is not

sufficient to conduct an analysis of the period and amplitude of the oscillations. Another complication in

examining the results is the difficulty in making direct comparisons between experiments. Although the

Cosine Distance may be the same, the orientation of the angle can be quite different.

Table 3. Variable ranking by success in determininog clusters as defined by nonmetric clustering.

Variables such as Ankistrodesmus and the Daphnia classes ranked highly in the course of this study.

However, reliance on any particular organism or a small combination of variables would inadequately

describe the dynamics of the system.

Jet-A JP-4

Variable Ranked Variable Ranked

Ankistrodesmus 12 Chlorella 8

M. Daphnia 11 S. Daphnia 8

Chlorella 9 Ankistrodesmus 6

Scenedesmus 7 Scenedesmus 5

S. Daphnia 6 Philodina 5

L. Daphnia 5 M. Daphnia 4

Ostracod 4 Lyngya 4

Philodina 4 L. Daphnia 3

Selenastrum 4 Ostracod 3

Lyngbya 3 Selenastrum 3

Ulothrix 1

DiScussion

First, the apparent recovery or movement of the dosed systems towards the reference or

treatment 1 case may be an artifact of our measurement systems that allow the n-dimensional data to be

represented In a two dimensional system. In an n-dimensional sense, the systems may be moving in

opposite directions and simply pass by similar coordinates during certain time intervals. Positions may

be similar but the n-dimensional vectors describing the movements of the systems can be very different. A

representation of these dynamics Is presented in Fig. 7. The two systems intersect, although the vectors

are quite different.



18

Systeme Systd

Deeeose Syslem

I ~~Sysism at end of stud pend

FIG. 7-Visualization of ecosystem dynamics to reflect a possible interpretation of the impacts of the jet
fuels.

The apparent recoveries and divergences may also be artifacts of our attermpt to choose the best

means of collapsing and representing n-dimnensional data into a two or three dimensional representation.
In order to represent such data it is necessary to project n-dimensional data into three or less dimensions.
As information Is lost as the shadow from a cube is projected upon a two dimensional screen, a simnilar
loss of Information can occur in our attempt to represent n-dimensional data. Not every divergence from
the reference treatment may have a cause directly related to It In time. Differentiating those events from
those due to degradation products or other perturbations is challenging.

Not only may system recovery be an iluihson, but there are strong theoretical reasons that seem

to indicate that recovery to a reference system may be Impossible or at least unlikely. In fact, systems
that cutter only marginally In their initial conditions and at levels probably impossible to measure are likely
to diverge In unpreictable manners. May and Oster (1978) In a particularly seminal paper investigated

the likelihood that many of the dynamics seen in ecosystems that are generally attributed as chance or
stochastic events are in tact deterministic. In fact, simple deterministic models of populations can give
rise to complex dynamics. Using equations resenbling those used In population biology, bif urcations
occur resulting in several distinct outcomes. Eventually, given the proper parameters, the system
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appears chaotic In nature although the underlying mechanisms are completely deterministic. Obviously,

biological systems have limits, extinction being perhaps the most obvious and best recorded. Another

ramification is that the noise in ecosystems and in sampling may not be the result of a stochastic process

but the result of underlying deterministic, but chaotic relationships.

These principals also apply to spatial distributions of populations as recently reported by Hassell

etal. (1991). In a study using host-parasite interactions, a variety of spatial patterns were developed

using the Nicholson-Bailey model. Host-parasite interactions demonstrated dynamics ranging trom static

'crystal lattice' pattems, spiral waves, chaotic variation, or extinction with the appropriate alteration of only

three parameters within the same set of equations. The deterministically determined patterns could be

extremely complex and not distinguishable from stochastic environmental changes.

Given the perhaps chaotic nature of populations it may not be possible to predict species

presence, population interactions, or structural and functional attributes. Katz et al. (1987) examined the

spatial and temporal variability in zooplankton data from a series of five lakes in North America. Much of

the analysis was based on limnological data collected by Brige and Juday from 1925 to 1942. Copepods

and cladocera, except Bosrn'na, exhibited larger variability between lakes than between years in the

same lake. Some taxa showed consistent patterns among the study lakes. They concluded that the

controlling factors for these taxa operated uniformly in each of the study sites. However, in regards to the

depth of maximal abundance for calanoid copepods and Bosmina, the data obtained from one lake had

little predictive power for application to other lakes. Part of this uncertainty was attributed to the intrinsic

rate of increase of the invertebrates with the variability increasing with a corresponding increase in rmax.

A high rmax should enable the populations to accurately track changes in the environment. Katz et al

suggest that these taxa be used to track changes in the environment. Unfortunately, in the context of

environmental toxicology, the inability to use one "reference" lake to predict the non-dosed population

dynamics of these organisms in another eliminates comparisons of the two systems as measures of

anthropogenic impacts.

A better strategy may be to let the data and a clustering protocol identify the important

parameters in determining the dynamics of and impacts to ecological systems. This approach has been

recently suggested independently by Dickson et al. (1992), Matthews et al. 1991, and Matthews and

Matthews 1991. This approach is in direct contrast to the more usual means of assessing anthropogenic

impacts. One classical approach is to use the presence or absence of so called indicator species. This

assumes that the tolerance to a variety of toxicants is known and that chaotic or stochastic influences are

minimized. A second approach is to use hypothesis testing to differentiate metrics from the systems in

question. This second approach assumes that the investigators know a proid the important parameters to

measure. Given that in our relatively simple SAM systems that the important parameters in differentiating

non-dosed from dosed systems change from sampling period to sampling period, this assumption can not
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be made. Classification approaches such as nonmetric clustering or the canonical correlation

methodology developed by Dickson et al. (1992), eliminates these assumptions.

These results presented in this report and by others reviewed above and the implications of

chaotic dynamics suggest that reliance upon any one variable or an index of variables may be an

operational convenience that may provide a misleading representation of pollutant effects and associated

risks. The use of indices such as diversity and the Index of Biological Integrity have the effect of

collapsing the dimensions of the descriptive hypervolume. Indices, since they are composited variables,

are not true endpoints. The collapse of the dimensions that are composited tends to eliminate crucial

information, such as the variability in the importance of variables. The mere presence or absence and

the frequency of these events can be analyzed using techniques such as nonmetric clustering that

preserve the nature of the dataset. A useful function was certainly served by the application of indices,

but the new methods of data compilation, analysis and representation derived from the Artificial

Intelligence tradition can now replace these approaches and illuminate the underlying structure and

dynamic nature of ecological systems.

The implications are important. Currently, only small sections of ecosystems are monitored or a

heavy reliance is placed upon so called indicator species. These data suggest that to do so is dangerous,

may produce misleading interpretations resulting In costly error In management and regulatory judgments.

Much larger toxicological test systems are currently analyzed using conventional statistical methods on

the limit of acceptable statistical power. Interpretation of the results has proven to be difficult, if not

confusing. Application of the approach and tools that proved successful in revealing the complex

dynamics of these small microcosms should prove useful in analyzing larger toxicological test systems

and field research.

CONCLUSIONS

(1) In both of the experiments, multiple oscillations of the dosed treatment groups away from the

reference treatment were observed using multivariate statistics. The first oscillation is due to the

differential impact of the WSF of the jet fuels to the algae-daphnid population dynamics. The following

oscillations, although statistically significant and seen In both experiments, is not as dear cut. The

divergence of the second oscillation may be due to two separate mechanisms.

(a) A fluctuation due to the initial stress has occurred, but in such a fashion that an incompletely

dampened oscillation repeats. There has been no fundamental alteration In the functioning of the

ecosystem, and the oscillations are a result of the inherent time lags and stochastic factors

governing the dynamics of the system.
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(b) A fundamental aspect of the ecosystem has been altered so that the repeated oscillations

reflect the persistence of the impact. An alteration in the detritus quality or in the community

Involved In the recycling of detritus may have long term impacts as other nutrients become

limiting in the system. Nutrients are at low levels during the second 30 days of a typical SAM

experiment. This possibility could include a fundamental and long lasting effect upon the system,

contrary to the first mechanism.

(2) A combination of multivariate analyses appear to be useful and illuminating in assessing the long

term dynamics of these systems. Each has strengths that make multivariate analysis a strong

methodology with powerful advantages to conventional univariate methods.

(3) Although simple systems, the SAM experiments exhibits complex dynamics and behaviors. The

protocol results in a persistent system with good replicability within an experiment, even with complex

species interactions.

(4) Techniques that allow the reduction and visualization of even these relatively simple multispecies

toxicity tests should contribute to our understanding of system dynamics and improve hazard assessment.

Resarch In Pfogrm-Summarles

Corarison of Test Results in the Evaluation of the WSF of Several Jet Fuelr Using the

Standardized Anuatic Microcosm and the Mixed Flask CIlture Protocols. The water soluble fraction of

the turbine fuels Jet-A, JP-4 and JP-8 have been examined as stressors for two microcosm protocols, the

standardized aquatic microcosm (SAM) and the mixed flask culture (MFC). The SAM is a 3 L system

inoculated with standard cultures of algae, zooplankton, bacteria, and protozoa. In contrast, the MFC is I
L and is inoculated with a complex mixture of organisms derived from a natural source. Analysis of the

organism counts and physical data were conducted using conventional and newly derived multivariate

methods. Physical parameters, such as pH and oxygen metabolism, were often not as sensitive as

species and bacterial counts. Like the SAM system, species numbers and other variables that

determined clusters varied among sampling dates. Compared to the larger yet simpler system, the MFC

exhibits more violent dynamics and is more likely to become catastrophically fixated, as in systems

dominated by cyanobacteria. The combination of greater diversity and smaller volume may contribute to

the volatile or chaotic dynamics of the MFC system.

Response Volumes (Soace-time Worms) as a Method for the Visualization of Ecomsstem
Dynamics and Indirect Effects. A variety of indexes and other composite measures of ecosystems, such

as measures of Integrity and diversity, have been used to summarize the state of an ecosystem. These

approaches have numerous shortcomings. We have developed a method for the visualization and
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quantification of the state of an ecosystem that projects from the original n-dimensional space into a two

dimensional representation. Currently, a principal components projection provides the axes to plot the

system in a two diF iensional space. In studies with several sampling dates, a projection is plotted for each

sampling day ary, then connected to form a three dimensional representation of the changes of the

ecosystem over time (Fig. 8). The response-volumes or space-time worms generated by this process

provide a three dimensional representation of the changes of an ecosystem over time. Various

perspectives can be generated until the best viewing point is selected for the particular attribute or

question under consideration. The method has proven vital in the examination of microcosm ecosystems

dosed with a variety of toxicants and should prove useful in the analysis of FIFRA type microcosms and

various field studies.

Day 63

TreTre ent

Response Area (Wormspace) for the JP-4 SAM Experiment
FIG. 8-Space-time worms for the non-dosed (treatment 1) and highest dosed (treatment 4) systems of 6

replicates.

Non-linear Dynamics of Microcosm Eovqterns and the Inherent Limitations of Risk Assessment.

Projections into two dimensional space with time are used to visualize ecosystem dynamics. The space-

time worm projections have demonstrated that the systems are moving in a complex dynamic that does

not repeat or recover as defined as the return of the dosed system to the space anW Jynamics of the non-

dosed case. In cases where the dosed and non-dosed treatments overlap, the subsequent dynamics

demonstrated that It is a case of passing through and not recovery. The patterns appear to be chaotic,
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such as turbulence and weather. Ecological important properties of these systems are: they do not

return to an original condition upon perturbation; the history of the perturbation resets the initial conditions

making a return to the initial state virtually impossible; history of the system is important in setting the

potential dynamics; and that predictions are limited not by knowledge but by the inhe'ent dynamics of the

system. Risk assessments and projections of impacts upon populaiions and communities have inherent

limits on their power of prediction. These limits are inherent to the underlying dynamics of the system and

not based on the uncertainty of the available knowledge.

Characterization and Classification of Direct and Indirect Effects at the Community and

Ecosystem Levels. The dynamics of the response of an ecosystem to a stressor have classically been

separated into direct and indirect effects. The initial direct effects of a toxicant alter the community in two

ways. First, the system can be displaced from its initial state. The magnitude of the displacement may

be estimated using current laboratory toxicity tests, however, given the complexity or even chaotic nature

of ecosystems, the directional vector of this displacement may be impossible to predict. Second, the

dispersion or variability of the system can also be altered. In some instances the variability of the system

can be radically decreased or increased depending upon the type of toxicant. Indirect effects, however,

may be so persistent as to take another stressor event to remove the impacts of this history from the

system. In our studies, recovery in the classical sense of returming to the original or reference state is

unlikely to occur. Even in unstressed systems small initial differences give rise to dramatic changes. The

accurate prediction of direction and magnitude of the indirect effect may prove impossible if ecosystems

exhibit sufficiently complex or chaotic dynamics.

Graduate Student Projects

Use of the Mixed Flask Culture (MFCQ Microcosm Protocol to Investigate fhe Effects of a Pulsed Release

of Jet-A-R.S. Sandbero and M.J. Roze. A 60-day 1 L Mixed Flask Culture (MFC) microcosm utilizing

organisms derived from natural systems was used to assess the potential ecosystem level effects of a

Aimulated release of a complex hydrocarbon mixture from sediments. A spiked layer of Standardized

Aquatic Microcosm (SAM) sediment was encapsulated under an overlying layer of coadapted MFC silica

sand and detritus. Treatment sediment groups consisting of six microcosm replicates were spiked with 0,

2, 10 and 25 microliters of Jet-A based on the results of preliminary acute 10-day freshwater sediment

amphipod bioassays using Hyalel. azteca as the test species. A slow, pulsed release of the test material

from the spiked layer was obtained by stirring vigorously twice weekly throughout the test. Statistically

significant effects among both community level physical properties and individual species population

dynamics were observed using conventional univariate and multivariate techniques as well as a recently

developed nonmetric multivariate clustering technique despite the relatively small proportion of Jet-A used

in the test.
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Evaluation of Comrmnity Structure and Community Function After Exposure to the Turbine Fuel Jet-A--

S. e. The underlying premises of the Mixed Flask Culture (MFC), an aquatic microcosm design,

include: 1) that the effects of a perturbation to an aquatic community may be monitored through the

measurement of its functional parameters (i.e. pH and productivity/respiration ratio), and 2) these

measurements will be similar between different wild-deried communities given the same perturbation.

Two MFC experiments were conducted to assess these two premises. The treatment groups in both

experiments consisted of 0%, 1%, 5%. and 15% WSF Jet-A with six replicates respectively. The

experimental designs reflected both the MFC and the Standard Aquatic Microcosm (SAM); this hybrid

design resulted in following a MFC protocol, but incorporated the SAM specified laboratory cultured

organisms. Beaker heterogeneity was encouraged in the second experiment by not cross inoculating or

reinoculating. The differences between the two experiments was designed to indicate if differently derived

communities react similarly to an identical perturbation. Do the microcosms within each treatment group

resemble each other functionally throughout the experiment, or is the within group deviation greater than

the between group deviation?

Comparison of the Degrdation of Water Soluble Cormonents in Jet Fuel Using the Standard Aguatic

Microcosm (SAM) and the Mixed Flask Microcosm IMFC).-A.J. Markiewicz. The Standard Aquatic

Microcosm (SAM), a synthetic assemblage of organisms derived from laboratory cultures, was used in

comparison with the Mixed Flask Microcosm (MFC), derived from natural sources, to monitor the

degradation rates and biodegradation products of water soluble components in jet fuel and to evaluate

whether ecosystem dynamics are similar between the two microcosm systems; independent of species

diversity and trophic level complexity. The SAM microcosms were used for analysis of the water soluble

fraction of JP-8, and the MFC microcosms were used for the water soluble fraction of Jet-A. Component

degradation and by-products were monitored using Purge and Trap I Gas Chromatography. Preliminary

results from both microcosms, using regression and multivariate analysis, indicate that all components are

degraded simultaneously, but at different rates; component degradation rates oscillate in similar patterns

temporally; most WSF components are completely degraded within 10-15 days; and that biodegradation

products continue to reappear in a cyclic pattem throughout the experiment. In the SAM microcosms,

WSF jet fuel components were rapidly sequestered from the water column and degradative rates were

lower. Both microcosms form significantly distinct groups when clustered by degradaton rates.
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Abstract

Turbine fuels are often the only aviation fuel available in most of

the world. Turbine fuels consist of numerous constituents with varying

water solubilities, volatilities and toxicities. This study investigates the

toxicity of the water soluble fraction (WSF) of Jet-A using the Stan-

dard Aquatic Microcosm (SAM). Multivariate analysis of the complex

data, including the relatively new method of non-metric clustering,

was used and compared to more traditional analyses. The SAM ex-

periment was conducted using concentrations of 0, 1, 5 and 15 percent

WSF. The WSF is added on day 7 of the experiments by removing

450 ml from each microcosm including the controls, then adding the

appropriate amount of toxicant solution and finally bringing the final

volume to 3L with microcosm media.

Analysis of the WSF using purge and trap gas chromatography re-

vealed 55 organic peaks. In the highest WSF concentration treatment

group an algal bloom ensued, generated by the apparent toxicity of

the WSF of Jet-A to the daplinids. As the test proceeded, the algal

populations decreased and were similar to the control values. At the

end of the SAM, ostracods exhibited a bloom, with the population den-

sity following treatment group in a dose/response manner. Univariate

statistics suggested that recovery had taken place by the end of the

SAM. Multivariate analysis, however, demonstrated oscillating sepa-

rations between the 4 treatment groups for the Jet-A experiment. The

variables that were most important in distinguishing the four groups
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shifted during the course of the 63 day experiment, demonstrating the

fallacy of using only one index or only a few measured endpoints in

the evaluation of community level interactions.
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Introduction

Over the last 15 years a variety of multispecies toxicity tests have been

developed with the hope that in doing so, the increased complexity of the

test would result in more realistic, community-level responses to the tox-

icant. However, the addition of more than one species, and the generally

longer time periods associated with these multispecies tests, also result in

much more complex data sets. Distinguishing toxicant effects from other

community-level changes has become one of the most critical obstacles to

the interpretation of multispecies data sets.

Multispecies toxicity tests are usually referred to as microcosms or meso-

cosms, although a clear definition of the size or complexity to distinguish

these terms has not been put forth. Multispecies toxicity tests range from

approximately 1 L (e. g. , mixed flask cultures) to thousands of liters, as in

the case of the pond mesocosms used in pesticide registration testing. The

number of species and origin of those taxa can vary widely. In the Stan-

dardized Aquatic Microcosm (SAM) 1 1) developed by Taub and colleagues

(2, 3, 4, 5, 6. 7, 8, 9, 10, 11, 12) the physical. chemical. and biological com-

ponents are defined as to species, media and substrate (see Table 1 and

Figure 1). In other systems colonization by the importation of sediment Table 1 near here
Figure I near

or by repeated inoculation forms a natural source is used to establish the
here

model system. Larger systems often use a combination of means to start
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and maintain a multispecies, interactive community.

One of the major difficulties in the evaluation of multispecies toxicity

tests has been the difficulty in the analysis of the large data set on a level

consistent with the goals of the toxicity test. Typically, the goals of the

toxicity test are:

"* to detect changes in the population dynamnics of the individual taxa

thýt would not be apparent in single species tests: and,

"* to detect community-level differences that are correlated with treat-

ment groups thereby representing a deviation from the control group.

A number of methods have been developed to attempt to satisfy the goals

of multispecies toxicity testing. Analysis of variance (ANOVA) is the clas-

sical method to examine single variable differences from the control group.

However, because multispecies toxicity tests generally run for weeks or even

months. there are problems with using conventional ANOVA. These include

the increasing likelihood of introducing a Type II error (accepting a false

null-hypothesis), temporal dependence of the variables, and the difficulty

of graphically representing the data set. Conquest and Taub (13) devel-

oped a method to overcome some of the problems by using intervals of

non-significant difference (IND). This method corrects for the likelihood of

Type II errors and produces intervals that are easily graphed to ease exam-

ination. The method is routinely used to examine data from SAM toxicity
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tests, and it is applicable to other multivariate toxicity tests. The major

drawback is the examination of a single variable at a time over the course of

the experiment. While this addresses the first goal in multispecies toxicity

testing, listed above, it ignores the second. In many instances, community-

level responses are not as straightforward as the classical predator/prey or

nutrient limitation dynamics usually picked as examples of single-species

responses that represent complex interactions.

Multivariate methods have proved promising as a method of incorpo-

rating all of the dimensions of an ecosystem. One of the first methods

used in toxicity testing was the calculation of ecosystem strain developed

by Kersting (14, 15, 16) for a relatively simple (three species) microcosm.

This method has the advantage of using all of the measured parameters of an

ecosystem to look for treatment-related differences. At about the same time,

Johnson (17, 18) developed a multivariate algorithm using the n-dimensional

coordinates of a multivariate data set and the distances between these coor-

dinates as a measure of divergence between treatment groups. Both of these

methods have the advantage of examining the ecosystem as a whole rather

than by single variables, and can track such proceses as succession, recovery

and the deviation of a system due to an. anthropogenic input.

However, a major disadvantage of both these methcds, and of many con-

ventional multivariate methods, is that all of the data are often incorporated

without regard to the units of measurement or the appropriateness of includ-
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ing all variables in the analysis It can be difficult to combine variable such

as pH, with units ranging from 0-14, with the numbers of bacterial cells per

ml, where low numbers are in the 106 range, to say nothing of the conceptual

difficulties of adding pH units to counts. Similarly, random variables (i. e.,

variables with no treatment-related response) indiscriminately incorporated

into the analysis may contribute so much noise that they overshadow vari-

ables that do show treatment-related effects.

Ideally, a multivariate statistical test used for evaluating complex data

sets will have the following characteristics:

"* It will not combine counts from dissimilar taxa by means of sums of

squares, or other ad hoc mathematical techniques, as in the Euclidean

and cosine distance measures.

"* It will not require transformations of the data, such as normalizing the

variance.

"* It will works without modification on incomplete data sets.

"* It will work without further assumptions on different data types (e.g.,

species counts or presence/absence data).

"* Significance of a taxon to the analysis will not be dependent on the

absolute size of its count. so that taxa having a small total variance,

such as rare taxa. can compete in importance with common taxa, and
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taxa with a large. random variance will not automatically be selected,

to the exclusion of others.

"* It will provide an integral measure of "how good" the analysis is, i.e.

whether the data set differs from a random collection of points.

"* It will, in some cases, identify a subset of the taxa that serve as reliable

indicators of the physical environment.

Recently developed for the analysis of ecological data is a multivariate

derivative of artificial intelligence research, nonmetric clustering, that sat-

isfies all these criteria, and has the potential of circumventing many of the

problems of conventional multivariate analysis.

In this paper, we use ANOVA and intervals of non-significant difference,

and three multivariate techniques to search for meaningful patterns in the

data set from a SAM toxicity test using Jet-A turbine fuel. The multivariate

techniques include two conventional tests based on the ratio of multivariate

metric distances (Euclidean distance and cosine of the vector distance), and

one relatively new program, RIFFLE, which employs nonmetric clustering

and association analysis (19). All three of the multivariate techniques have

proven useful in analyzing complex ecological data sets (20, 21). Of the

three, only nonmetric clustering meets all of the criteria listed above (22).

The major disadvantage of the RIFFLE program is that. in order to find

a clustering of the data points with the desirable qualities listed above,
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a massive search through thousands of potential clustering candidates is

made before settling on the -'right" one. Even after this search, there is

no guarantee that RIFFLE finds an optimal clustering. However, in our

experience, RIFFLE does find an excellent clustering in reasonable time.

Jet fuels or perhaps more accurately, turbine fuels, are one of the primary

fuels for internal combustion engines worldwide and certainly are the most

widely available aviation fuel. Over the last 15 years virtually all of the

commercial airline operations and charter operations have converted to a

turbine engine because of the inherent low operating cost of the power plant,

its reliability, and in part to the availability of fuel even in undeveloped areas.

In the U. S. military there has been a progressive replacement of conventional

piston engine vehicles with turbine equivalents. Standardization on a single

type of turbine fuel to relieve logistical demands is also underway. Given the

overwhelming predominance of turbine fuel, a fuel spill or accidental release

of aviation fuel will likely be one of the prevalent turbine fuels: Jet-A ,used

for commercial and general aviation: JP-4, the standard fuel of the U. S. Air

Force and Army Aviation; and JP-5, the naval equivalent of JP-4. JP-8 is

a new fuel proposed as the standard for all military vehicles using turbine

engines.

Along with the environmental considerations. turbine fuels also offer ad-

vantages as model complex toxicants for toxicological research. Because of

their use as aviation fuel, turbine fuels are produced to stringent specifica-
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tions designed to ensure the safety of flight. Therefore, the overall general

properties of these materials are tightly controlled. In addition, standard

archived samples of the military fuels are maintained for toxicological stud-

ies at Wright Patterson, AFB. Jet fuels also tend to be less explosive and

also less volatile than gasoline, making the materials easier and safer to use.

Like all petroleum products, however, the exact identity of the constituents

varies according to the original crude and the refining process.

This paper reports the effects of low concentrations of the water soluble

fraction (WSF) of Jet-A on the community incorporated in the SAM. The

effects of the WSF on the microcosm communities were subtle. An early

increase in algal density was apparent in the treatment groups containing

the highest concentrations of the WSF and was matched by a decrease in

daphnid populations. Multivariate analysis proved to be more powerful and

efficient in highlighting important variables and processes than ANOVA.

The variables that were most important is distinguishing treatment-related

effects shifted during the course of the experiment. The multivariate analy-

sis also detected oscillations in the similarity of the control and dosed groups

that were not apparent using conventional univariate tests. The oscillations

may be due to the inherent perturbations in community dynamics, or the

effects upon the segments of the community not directly measured, the bac-

terial detritivores. We discuss the danger of using only one index, or only a

few measured endpoints, in the evaluation of community level interactions
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in hazard determination and monitoring for risk assessment.

Materials and Methods

Reagents

All chemicals used in the culture of the organisms and in the formulation of

the microcosm media were reagent grade or as specified in the protocol (1).

Jet-A was provided by Fliteline Services of Bellingham, Washington, U.S.A.,

and was refined by Chevron. The sample was obtained from the sample valve

used for quality control and water sampling to prevent contamination by the

refueling apparatus. The shipment lot was recorded and is on file.

Glassware for the preparation of the WSF of Jet-A was washed in non-

phosphate soap, rinsed, soaked in 2M HCl for at least 1 h, rinsed ten times

with distilled water, dried, and finally autoclaved for 30 min. Microcosm

medium, T82MV, acted as the dilutent for the water fraction of the WSF.

Twenty-five ml of Jet-A was added to a 2-L separatory funnel, and agitated

as follows:

1. Shake separatory funnel for 5 miin, releasing built up pressure as nec-

essary.

2. Allow funnel contents to remain undisturbed for 15 min.

3. Shake contents for 5 min. allow to stand 15 min.



Multivariate Analysis of Jet-A Toxicity 11

4. Continue same pattern for a total time of 2 h.

5. Allow separatory funnel contents to remain undisturbed for 8 h.

At the end of this procedure the mixture was allowed to stand overnight.

The next day all but 100 ml of T82MV/WSF mixture from the separatory

funnel was drained into a cleaned, sterile 1 L amber glass bottle and capped

with a Teflon-lined screw cap. This leaves the lighter, insoluble fuel mixture

in the flask. The WSF was used within 24 h or stored at 40 C for no longer

than 48 h before use as toxicant mixture.

Gas Chromatography of WSF

The gas chromatography analysis of the WSF used a Tekmar LSC 2000

Purge and Trap (P&T) concentrator system in tandem with a Hewlett

Packard 5890A Gas Chromatograph and a Flame Ionization Detector (FID)

(23, 24, 25). Instrument blanks and deionized distilled water blanks were

used to verify the P&T and GC columns cleanliness prior to analysis of the

WSF samples. A five ml sample was injected into a 5 ml sparger, purged

with pre-purified nitrogen gas for 11 rmin and dry purged for 4 rmin. Volatile

hydrocarbons, purged from the sample and collected on the Tenax/Silica

Gel column, were desorbed at 1800 C directly onto the gas chromatograph

SPB-5, 30m x 0.53 mm ID 1.5 /m film, fused silica capillary column. The

column, at 350 C, was held at that temperature for 2 min, increased to 2250
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C at 12 *C/min and held at that temperature for 5 min. A Spectra-Physics

4290 Integrator was used to record the FID signal output of the volatile

hydrocarbons that were separated and eluted from the column by molecu-

lar weight. A comparison was then made of the sample chromatograph to

n-paraffin and n-naphtha chromatograph standards, prepared and analyzed

under the same conditions. A summary of the specification for the P&T gas

chromatography used for this experiment is listed in Table 2. Table 2 near here

Algal and Daphnic Toxicity Tests

In order to determine the appropriate WSF concentrations to use for for the

SAM microcosm, a series of short-term toxicity tests were performed. These

included 96 h algal growth inhibition tests using three species of algae and

a 48 h Daphnia magna toxicity test.

Algal growth inhibition

Algal growth inhibition tests were performed to determine the toxicity of the

WSF of the various fuels using Cidamydamonas reinhardii, Ankistrodesmus

falcatus and Selenastrum capricornutum.

The test algae were grown in a semi-flow through culture apparatus on

the microcosm media T82MV and taken during log phase growth for inoc-

ulation into the test flasks. Five hundred ml Erlenmeyer flasks with ground

glass stoppers were used as test chambers. Each test chamber contained a
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total of 100 ml of the control or treatment solution. Two replicates of of the

following dilutions were used: 0.0, 6.25, 12.5. 25, 50 and 100 percent WSF.

All dilutions of the WSF were made using T82MV. The test organisms were

added at a concentration of approximately 3.0 x 104 ceUs/ml. Test mixtures

were incubated at 20.00 C ± 1.00 C with a 12:12 h light/dark cycle. Cell

densities were determined every 24 h during the 96 h test using a Newbauer

Counting Chamber.

The cell numbers were then plotted against the WSF concentrations. If

possible, a least-squares regression line was drawn and the IC 50 (the con-

centration at which algal growth is reduced to 50% of the control) was

determined. An ANOVA was used to determine if any of the groups were

significantly different.

D. magna toxicity test

Daphnia magna acute toxicity tests (26) were conducted using T82MV

medium at concentrations of 0, 6.25, 12.5, 25, 50 and 100 percent WSF. Ten

neonates were placed in 250 ml beakers containing 200 ml of test solution,

with two replicates at each concentration. After 24 and 48 h, the number

of dead were recorded. Data were analyzed graphically and statistically to

obtain an estimate of the ECN0 .
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SAM Protocol

The 64-day SAM protocol follows most of the procedures described in (1).

Table 1 describes the organisms, conditions and modifications used for the

Jet-A experiment. The microcosms consist of 4 L glass jars containing 3 L

of sterile T82MV microcosm medium and autoclaved sediment consisting of

200 g silica sand and 0.5 g of ground chitin. The sediment is autoclaved

in the experimental jar immersed in a water bath to a point above the

sand and chiten level during sterilization. This procedure helps prevent

breakage of the jars and subsequent loss of replication. The microcosms

were inoculated with ten algal, four invertebrate, and one bacterial species.

The microcosms were incubated at 20.00 C (E 1.00 C. with illumination set

at 79.2 jEm- 2 sec- 1, PhAR ranging from 78.6-80.4, and a 16/8 day/night

cycle. The numbers of organisms. dissolved oxygen (DO) and pH were

determined twice weekly.

The major modification on the SAM protocol was the means of toxicant

delivery. The test material was added on day 7 by stirring each microcosm,

removing 450 ml from each container, and then adding appropriate amounts

of the WSF to produce concentrations of 0, 1.5, and 15 percent WSF. After

toxicant addition the final volume was adjusted to 3L. No attempt was made

to filter and retain the organisms withdrawn during the removal of the 450

ml prior to toxicant. All graphs and statistical analysis start with the next
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rnpling day, day 11.

Data Analysis

All data were recorded onto standard computer entry forms and checked

for accuracy. The parameters that were calculated included the numeri-

cal densities for each of the species, DO, DO gain and loss, net photosyn-

thesis/respiration ratio (P/R), pH, algal species diversity, algal biovolume,

and biovolume of available algae (1). For each of the parameters, the IND

was determined (13). The INDs and the average values for each treatment

group were plotted against time to identify significant differences between

the treatments and control. Note that algal biovolume, algal species diver-

sity, and available algae are all derived variables based on the algal counts.

The P/R ratio was derived using daytime and nighttime oxygen concentra-

tions.

Three multivariate significance tests were used. Two of them were based

on the ratio of multivariate metric distances within treatment groups vs be-

tween treatment groups. One of these was calculated using Euclidean dis-

tance and the other with cosine of vectors distance (27, 28). The third test

used nonmetric clustering and association analysis (19).

The biotic parameters used for our multivariate analysis of the SAM data

are listed in Table 3. Treating a sample on a given day as a vector of values, Table 3 near

; = (Xl ... X17), with one value for each of the measured biotic parameters, here.
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allows multivariate distance functions to be computed. Euclidean distance

between two sample points F and y was computed as:

S(xi - y,)2

The cosine of the vector distance betwecn the points Y and g was computed

as:

1 - _, X~ii

Subtracting the cosine from one yields a distance measure, rather than a

similarity measure, with the measure increasing as the points get farther

from each other.

The within-between ratio test used a complete matrix of point-to-point

distance (either Euclidean or cosine) values. For each sampling date, one

sample point f was obtained from each of six replicates in the four treat-

ment groups, giving a 24 x 24 matrix of distances. After the distances were

computed, the ratio of the average within group distance (W) to the average

between group distance (B) was computed (WIB). If the points in a given

treatment group are closer to each other, on average, than they are to points

in a different treatment group. then this ratio will be small. The significance

of the ratio is estimated with an approximate randomization test (29). This

test is based on the fact that, under the null hypothesis, assignment of points

to treatment groups is equivalent to a random assignment, th- trpatment

having no effect. The test, accordingly, randomly assigns the 24 points to
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(pseudo) groups, and recomputes the WIB ratio, a large number of times

(500 in our tests). If the null hypothesis is false, this randomly derived ratio

will be larger, on average, than the the W/B ratio obtained from the actual

treatment groups. By taking a large number of random reassignments, a

valid estimate of the probability under the null hypothesis is obtained as

(n + 1)/(500 + 1), where n is the number of times a ratio less than or equal

to the actual ratio was obtained (29).

In the clustering association test, the data were first clustered indepen-

dently of treatment group, using nonmetric clustering and the computer

program RIFFLE (22). Because the clustering analysis is naive to treat-

ment group, the clusters may, or may not correspond to treatment effects.

Under the null hypothesis, there should be no correspondence between the

clustering and the treatment groups. To evaluate whether the clusters were

related to the treatment groups, the association between clusters and treat-

ment groups was measured in a 4 x 4 contingency table, each point in treat-

ment group i and cluster j being counted as a point in frequency cell ij.

Significance of the association in the table was then measured with Pear-

son's x 2 test (30), defined as

•2 _ (Nj - n,,) 2

wi eo nij

where N,j is the actual cell rount and nij is the expected cell frequency,
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obtained from the row and column marginal totals N+, and N,+ as

_N+• N,+
nlj •-= N4j,

N

where N = 24 is the total cell count. The significance (probability) for this

value of X2 was computed using a standard procedure (31).

Results

GC Analysis

Originally, 55 peaks were distinguishable as constituents of the WSF derived

from Jet-A (Figure 2). At the end of the 63 day course of the experiment, Figure 2 near

and using the same method, virtually all of the peaks had disappeared from here

the water column.

Short Term Toxicity Tests

Three sets of 96 h algal toxicity tests were perfor-med (using A. falcatus, S.

capricornutum, and C. reinhardii). None of the tests demonstrated dramatic

toxicity or enhancement under the test conditions. Selenastrum demon-

strated a trend towards a slight enhancement of growth, but not in any dose

response manner (Figure 3a). Ankistrodesmus seems to indicate a slight

inhibition, but not in a traditional dose/response manner (Figure 3b). No Figure 3 near

difference was observed in the Chlamydamonas toxicity tests, likely due to here

the slow growth of this strain under these test conditions.



Multivariate Analysis of Jet-A Toxicity 19

The 48 h D. magna toxicity tests did demonstrate an acute toxicity re-

sulting in a graphically derived ECS0 of approximately 10 percent WSF.

Therefore, we expected that the highest concentration in the SAM exper-

iments would adversely impact the daphnid populations shortly after the

toxicant addition.

Univariate ANOVA and IND results

Algae The largest increase in algal population density occurred in Treat-

ment 4 (see Figure 4). The peak density is approximately four times that Figure 4 near

of the control replicates at day 21. Treatment 3 also exhibited an early here

increase in algal density during the first fourteen days after the introduc-

tion of the toxicant. The algal densities in the control and lowest treatment

group both exhibited decreases in algal densities during the same period.

At the end of the experiment the total algal numbers are not significantly

different although Treatments 3 and 4 are consistently lower. Algal species

diversity also generally declined in each of the treatment groups but not in

relationship to dose.

Daphnia The control and lowest treatment group demonstrated similar

patterns of daphnid population dynamics (Figures 5a and 5b). The early

increases in the algal densities in the two highest treatment groups are likely

due to the inhibition of reproduction and the survival of the neonates in the
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period after dosing. In Treatment 3 we saw an increase in the number of

small daphnids and the overall population starting on day 14 (Figure 5c).

Treatment 4 did not show a major increase in the daphnid populations until

day 17; the peak was not reached until after day 30 (Figure 5d). Figure 5 near

here

Ostracods At the end of the experiment the average population density

in the control treatments was approximately twice that of Treatment 4 (Fig-

ure 6). The population densities in the other treatments were ranked in a Figure 6 near

dose/response manner. The ranking was consistent from day 49 onward. here

The IND plot does not pick any of these results as being significantly differ-

ent from the control.

Philodina and Protozoans The hypotrichous protozoa were present

only in low densities throughout the experiment. Philodina did not ap-

pear in appreciable numbers until after day 35 in any of the treatments.

Although the control harbored the lowest density at the end of experiment,

compared to Treatments 3 and 4, the IND plots did not show any significant

differences (Figure 7). The difficulty in sampling rapidly growing and de- Figure 7 near

cining populations with asynchronous growth is apparent. Although trends here

may be suggested, conventional analysis did not see a significant effect.

pH and P/R ratio The P/R ratio, measured by changes in oxygen con-

centration, exhibited a dose response relationship early in the experiment
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with Treatments 3 and 4 being significantly different from the controls ac-

cording to the IND plots (Figure 8a). Excursions from the control appear

to occur on day 53 but again, this may be a chance event.

pH responded in a dose response manner to the addition of Jet-A. During

the period of the algal blooms pH was significantly higher than in the two

highest treatment groups than in the control, as determined by the IND

plots (Figure 8b). On day 49 a deviation from the control in a dose/response

manner was detected. However, with the multiple comparisons being made

it is difficult to attribute such an event to the treatment. At the end of the

experiment all of the groups resembled the control. Figure 8 near

here

Multivariate results

The significance levels for the three multivariate tests performed for each

sampling day are graphed in Figure 9. All tests agree that a significant Figure 9 near

difference between treatment groups was observed through day 25. From here

day 28 to day 39, the effect diminished until there were no significant effects

observable. However, significant effects were again observable from day 46

through day 56, after which they again disappeared for days 60 and 63.

In Figure 10, the average cosine distances within the control group and

between the control group and each of the three treatment groups are plotted

on a log scale. The initial, strong effect, from day 11 to day 25, is easily Figure 10 near

seen as a large distance from Treatments 1 (control) and 2. together, to here
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both Treatment groups 3 and 4. Group 3 subsequently moves closer to

the control. The period of no significant difference, from day 35 to day

46, is also clear. During the second period of significant difference, from

day 49 to 59, a perfect dose-response relationship for all three treatments is

seen, with higher doses becoming more distant from the control. This dose-

response relationship is consistently maintained over a period of eleven days,

for four sampling dates, days 49, 53, 56, and 59. In general, a dose-response

relationship like this was not observed earlier, although the magnitude of

thc distances was considerably greater.

Also of interest are the variables that best described the clusters and the

stability of the importance of the variables during the course of the experi-

ment. Table 4 lists the variables determined to be important in determining

the clusters, ranked by importance, for each sampling day as determined by

nonmetric clustering. In general, the number of variables that were impor- Table 4 near here

tant was larger during the start of the test, and lower at the end. In addition,

a great deal of variabillity in rankings is apparent during the course of the

SAM. The number of sampling dates when a variable was deemed impor-

tant in cluster formation is listed in Table 5. Ankistrodesmus was the most Table 5 near here

consistent of the variables, being ranked in 12 out of the 16 sampling dates.

Medium Daphnia was also ranked often. However, variables like Ostracod

and Philodina did not become important until later in the experiment.
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Discussion

Our examination of individual parameters provided only a limited, and

somewhat distorted view of the SAM microcosm response to Jet-A. The

univariate data analysis did indeed show that there were some significant

responses to the toxicant by individual taxa and chemistry; however, the

responses were scattered over time, and did not present a logical, coherent

pattern. Futhermore, the individual responses we could detect were typi-

cally gross aberrations of the microcosm, signifying wild swings in a taxon's

population density over time. If you kill or restrict the production of most

of the Daphnia, the next microcosm response is likely to be an algal bloom.

Measuring these types of gross responses to the toxicant do not provide

much more insight into the fate of the toxicant in the ecosystem than do the

short-term single-species tests.

However. the multivariate analysis reveals a much more interesting dy-

namic. Although not particularly toxic in the short term toxicity testing,

Jet-A had detectable effects upon the dynamics of the multispecies test sys-

tem, effects which persisted until the end of the experiment. It is important

to note that the original WSF mixture was no longer present at the end of

the SAM experiment, no doubt lost to volatilization or biotransformation

and biodegradation by the biota.

Extrapolation from a simple system to precise estimates of risk to aquatic
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systems is a process filled with scientific uncertainty. However, the initial

imbalance in predator/prey dynamics and the apparent oscillation of even

a simple system, point to effects not observable using single species toxicity

testing. The repeated divergence of the dosed replicates from the controls

can be accounted for in two basic ways:

"* It might reflect the functioning of the community in terms of param-

eters not directly sampled by the SAM protocol.

"* It might be a persistent fluctuation in community structure initiated

by the initial stress, but is only periodically visible, as if it were an

incompletely dampened oscillation in the systems.

We will now briefly consider each of these.

The multivariate statistics suggest a complex pattern of multiple di-

vergences and convergences in the similarities between treatment groups.

Much as an ecosystem could be expected to display the rise and fall of

species assemblages, the SAM microcosms appear to indicate that the first

divergence is only the beginning of a series of responses. Using nonmetric

clustering, we were able to list the variables that were the most important

for separating the treatment group clusters for each day that measurements

were collected (see Tables 4 and 5). The list of variables suggests that the

first divergence, which occurred from about day 11 through day 32, results

from predator/prey interactions between primary producers (algae) and first



Multivariate Analysis of Jet-A Toxicity 25

order consumers (Daphnia). Theoretically, this divergence should be char-

acterized by the following properties:

"* The divergence will be fast, because the algae and Daphnia populations

are introduced into the microcosm after being cultured in optimal

laboratory conditions, in artificially high densities, and therefore are

unstable. Predation, or the lack of predation, will cause rapid changes

in the algal densities of prey species.

"* The divergence will be short-lived, because the populations are unsta-

ble in the nutrient-rich early successional microcosm. There will be

a tendency for the microcosms to drift away from the early "treat-

ment" effect into a more stable community based on both algae and

detritus as the food source for the secondary consumers. Initially, this

drift may mask treatment effects and be interpreted as recovery of the

system.

The first divergence is the only type of response that is normally searched

for in microcosm tests using conventional statistics. This response is typical

of many reported SAM experiments (9, 10, 32, 33).

The second divergence occurred from about day 46 through day 60. Dur-

ing this time, Daphnia and some of the algal taxa were often still important

in the cluster development; however, other secondary consumers (Ostracods

and Philodina) entered the list. The second divergence therefore may rep-
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resent the long-term effects of the initial toxicant on a more successionally

mature community that is fueled by both algae and detritus. If so, the

second divergence should have the following characteristics:

" It has been strongly influenced by detritus quality. Detritus is condi-

tioned by bacteria and fungi, which are highly sensitive to toxins but

unmeasured in the microcosm. Also, detritus that has passed through

the gut of a consumer (e.g., consumed algae) is different from detritus

that originates directly from dead algae (unconsumed). Therefore, the

quality of the detritus may be highly affected by the treatment, but

none of the factors influencing the effects will be measured directly.

"* Secondary consumers of detritus and bacteria are no less affected by

the quality of their food source than algal consumers, so the treatment-

related alterations of the quality of detritus and bacteria will cause

differences in the secondary consumer populations.

"* Therefore, the second divergence may still represent a direct response

to the initial treatment effects, but because it occurs late in the micro-

cosm experiment and is difficult to detect with univariate statistics, it

is easily misinterpreted as noise or the effects of a degredation product.

A study of the detritus and bacteria present in late successional microcosms

may answer these questions.
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However, an alternative explanation may also explain the second diver-

gence, without invoking direct impacts of unseen biotic components of the

system. The initial pcrturbation may be spread through the system, and

persist continuously through the experiment, while the convergence seen

during the middle of the experiment may be an observational artifact. In

effect, the systems may be moving in different directions and simply pass

by each other during certain time intervals. As the various groups converge

and then reseparate, the second divergence may be seen as a separate event,

but in fact this separation is a continuation of the dynamics initiated earlier.

The illusion of recovery may simply be a momentary, accidental, confluence.

It may well be the case that not every divergence from the control treat-

ment has an observable cause directly related to it in time; differentiating

these effects from those due to unobserved consumers, detritus, degradation

products or other population and community dynamics is challenging.

Another important characteristic of this experiment is the dynamics of

the variables characterized as important by the multivariate analysis. Taken

separately, none of the biotic variables used by the multivariate analysis

could clearly point to the second departure from the control group response,

although hints and suggestions abounded. The sampling variance was sim-

ply too high. especially in the protozoa, rotifers and ostracods. However,

when correlations were taken on a replicate-by-replicate basis using multi-

variate analysis. the trends were clear and statistically significant. Even pH,
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a variable with a low sampling error, could not clearly distinguish the second

divergence, although the IND did show a significant difference late in the

expeirment. Without corroboration, the points outside the IND could be

considered outliers, improbable events. However, the multivariate analysis

demonstrated a clear and significant dose/response relationship. Nonmetric

clustering was also able to select the variables that were important in dis-

tinguishing the four treatment groups, although the variables contributing

to the differentiation changed from sampling day to sampling day.

These data suggest that reliance upon any one variable, or an index of

variables, probably would have missed the second oscillation of the treat-

ments. The implications are important. Currently, only small sections of

ecosystems are monitored, or a heavy reliance is placed upon so-called in-

dicator species. These data suggest that to do so is dangerous and may

produce misleading interpretations resulting in costly errors in management

and regulatory judgements.

Several questions raised by this experiment are now the goals of future

research. The dynamics of the loss of jet fuels from the SAM systems is

currently being investigated in greater depth. The multiphased response

seen in this experiment may have been a chance event. Additional test-

ing of related jet fuels is also currently being conducted. The implications

for hazard and risk assessment are also significant and we are investigating

the incorporation of multivariate analysis into these processes. Finally, the
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effects of size and community structure abound. The SAM system is rela-

tively simple. Data sets incorporating more diverse species assemblages and

of varying sizes are being investigated for comparison.

In summary, we can make the following observations: The water soluble

fraction of Jet-A has a low toxicity to algae but a greater toxicity to the

cladoceran D. magna. In the microcosm study, only some of the effects of

Jet-A can be attributed to differential toxicity. At least two oscillations from

control are distinguishable in the treatment group responses. Multivariate

analysis is crucial in observing effects with highly dimensioned and typi-

cally noisy data sets. Multivariate analysis points to the dynamic nature

of variables important in distinguishing treatment groups. Reliance upon

indices that condense data, or upon indicator species, may be misleading in

determining effects of stressors upon biological communities.
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Table 1. Summary of Test Conditions for Conducting SAM Jet-A

Organisms
Organisms per chamber: Algae (added on Day 0 at initial concentration of 103 cells for

each algae species): Anabaena cylindrica,
Ankistrodesmus sp.,
Chiamydomonas reinhardi 90,
Chlorella vulgaris,
Lyngbya sp.,
Scenedesmus ob/iquus,
Selenastrum capncornutum,
Stigeoclonium sp., and Ulothrix sp.

Animals (added on Day 4 at the initial numbers indicated in
parentheses): Daphnia magna (16/microcosm), Cypridopsis sp.
(ostracod) (6/microcosm), Hypotrichs [protozoa] (0.1/mL),
and Philodina sp. (rotifer) (0.03/mL)

Experimental design
Test vessel type and size: One-gallon (3.8 L) glass jars16.0 cm wide at the shoulder, 25 cm

tall with 10.6 cm openings

Medium volume: 3000 mL added to each container

Number of replicates x concentrations: 6x4

Reinoculation: Once per week add one drop (circa 0.05 mL) to each microcosm
from a mix of the ten species = 5 x 102 cells of each alga added
per microcosm

Addition of test materials: Test material added day 7 by removing 450 mL from each
container and then adding appropriate amounts of the WSF to
produce concentrations of 0, 1, 5 and 15 percent WSF. After
toxicant addition the final volume was adjusted to 3L.

Sampling frequency: 2 times each week

Test duration: 63 days

Physical and chemical parameters
Temperature: k.3 to 250C

Light intensity: 80 pE m-2 photosynthetically active radiation s-1 (850 to 1000 fc)

Photoperiod: 12 h light /12 h dark

Medium: Medium T82MV

Sediment: Composed of silica sand (200 g), ground, crude chitin (0.5), and
cellulose powder (0.5 g) added to each container

Measurements: Algal, invertebrate and protozoa counts, pH, dissolved oxygen,
optical density, Parameters calculated included the
concentrations of each of the species, DO, DO gain and loss,
net photosynthesis/respiration ratio (P/R), pH, algal species
diversity, daphnid fecundity, algal biovolume, and biovolume of
available algae.
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Table 2. Purge and Trap and Gas Chromatograph Specifications for the Analysis of Jet-A Water Soluble
Fraction

Tekmar LSC 2000 Purge and Trap column and conditions:
Sample size: 5 mL
Valve, mount and line initial temperature: 300C
Purge pressure: 140 kPa
Purge: 11 minutes at 42.6 cm/sec. N2
Dry purge time: 4 minutes
Trap: Tenax/Silica Gel, 1/8I x 12", SS
Desorb preheat temperature: 1750C
Desorb temperature and time: 1800C for 4 minutes
Bake temperature and time: 1800C for 5 minutes

Hewlett Packard 5890A Gas Chromatograph column and conditions:
Column head pressure: 30 kPa
Carrier Gas: Nitrogen, Flow rate: 46.1 cm/sec.
Hydrogen flow rate: 40 crmVsec. Air flow rate: 350 cm/sec.
Column temperature program: 35 0C/2 min. H 120 C/min. to 2250C/5 min.
Detector: Flame Ionization Detector
Integrator: Spectra-Physics 4290



38

Table 3. Biotic parameters used in the multivariate statistical tests. Biotic variables such as diversity,
available biovolume, and total algal biovolume are not used since they are derived from and therefore not
independent of the variables listed above.

Anabaena
Ankistrodesmus
Chlamydomonas
Chlorella
Daphnia

Ephipia
Small Daphnia
Medium Daphnia
Large Daphnia

Hypotricha
Lyngbya
Miscellaneous sp.
Ostracod (Cyprinotus)
Philodina (Rotifer)
Scenedesmus
Selanastrum
Stigeoclonium
Ulothrix
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Table 4. Important variables as determined by Non-metric clustering ranked according to contribution for
each sampling day. Some variables such as Ankistrodesmus were consistently important in determining
group clusters throughout the experiment. Some of the variables such as Ostracod and PfhiQodina were
more important in the latter stages of the experiment. Note that the order of importance of even the more
common contributors often changed from day to day, with no one variable being consistently ranked,
Ankistrodesmus being the closest.

Day Important Variables in Determining Clusters in Rank Order

11 M. Daphnia, Chiorella, Chiamydamonas, Ulothrix, S. Daphnia,Selanastrum,Scefledesmus

14 S. Daphnia, M. Daphnia-Selenastruml, Chiamydamonas, Chiorella, L. Daphnia, Ankistrodesmus

18 Ankistrodesmus, S. Daphnia, Chiorella, Chlamydamonas, Selanstrum, L. Daphnia

21 Ankistrodesmuis, S. Daphnia, L. Daphnia-M. Daphnia, Scenedesmrus
25 Scenedesmus, S. Daphnia, L. Daphnia, Chlorella, Phlj!jina-M. Daphnia

28 Ankistrodesmus, L. Daphnia, Scenedesmus

32 S. Daphnia, M. Daphnia, Ankistrodesmus, Chlorella
35 Ankistrodesmus

39 M. Daphnia-Selenastrum, Ostracod-Ankistrodesmus

42 M. Daphnia, Ostracod, Scenedesmus

46 Scenedesmus, Ankistrodesmus, S. Daphnia. M. Daphnia
49 Chlorella, Pfhilodina, Ankistrodesmus, Lyngbya

53 Ankistrodesmus, Ostracod, Chiorella

56 M. Daphnia-Scenedesmus, Ankistrodesmus, Lyngbya
60 Lyngbya, M. Daphnia, Philodina, Chlorella

63 Chlorella, Ankistrodesmus, PhlIdina, Ostracod

1 Hyphen between variables denotes equal rank
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Table 5. Variable According to Success in Determining Clusters as Defined by Non-metric Clustering.
Variables such as Ankistrodesmus and the Daphnia classes were important in the course of this study.
However, reliance on any particular organism or a small combination would have poorly described the
dynamics of the system.

Variable Ranked

Ankistrodesmus 12

M. Daphnia 11

Chlorella 9

Scenedesmus 7

S. Daphnia 6

L. Daphnia 5

Ostracod 4

Philodina 4

Selenastrum 4

Lyngbya 3

Ulothrix 1
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Figures

Figure 1. Timeline for the Standardized Aquatic Microcosm Jet-A Experiment. Each step of this 63 day

protocol is choreographed according to ASTM E 1366-91. The modifications to the protocol are the

elimination of Nitchia and Hyalella azteca and the modification of the method for toxicant delivery.

Figure 2. Trap and Purge Gas Chromatography Results for the WSF of Jet-A. Originally 55 peaks are

distinguishable as constituents of the WSF derived from Jet-A. At the end of the 63 day course of the

experiment and using the same method virtually all of the peaks have disappeared from the water

column.

Figure 3. 96 h Algal Toxicity Tests. Toxicity tests were performed with A. falcatus, S. capricomutum and

C. reinhardi. None of the tests demonstrated dramatic results. Selenastrum demonstrated a trend

towards a slight enhancement of growth, but not in any dose response manner (Figure 3a.). A. falcatus

seems to indicate a slight inhibition, but not in a traditional dose response manner (Figure 3b.). No

difference was observed in C. reinhardi toxicity tests, likely due to the slow growth of this strain under

these test conditions.

Figure 4. Patterns in Algal Communities. The algal densities in the control and lowest treatment group

both exhibited decreases in algal densities until day 21 (Figures 4a and 4b). Treatment 3 (Figure 4c)

exhibited an increase in algal density during the first fourteen days after the introduction of the toxicant.

The largest increase in algal population density occurred in Treatment 4 (Figure 4d). The peak density is

approximately four times that of the control replicates at day 21. At the end of the experiment the total

algal numbers are not significantly different although Treatments 3 and 4 are consistently lower.

Figure 5. Daphnid Population Dynamics. The control and lowest treatment group demonstrated similar

patterns of daphnid population dynamics (Figures 5a and 5b). The early increases in the algal densities

in the two highest treatment groups are likely due to the inhibition of reproduction and the survival of the

neonates in the period after dosing. In Treatment 3 day 14 first saw an increase in the number of small

daphnids and the overall population (Figure 5c). Treatment 4 did not see a major increase in the daphnid

populations until day 17, and the peak, the highest of the treatment groups, was not reached until over

midway through the experiment (Figure 5d).

Figure 6. Ostracod Population Dynamics. The average population density in the control treatments is

approximatly twice that of Treatment 4, the highest concentration. In between the populations densities
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are ranked in a dose response manner. Although suggestive and not readily apparent in the other

biological data, the apparent dose response falls within the IND plot surrounding the control.

Figure 7. Philodina Population Dynamics. The population dynamics of the Philodina suggest a treatment

effect towards the end of the experiment. As with the ostracods the sampling error is too large to

distinguish such an effect using conventional univariate techniques. The bars are standard deviations for

the means of each sampling day.

Figure 8. Photosynthesis/Respiration ratio and pH. As with the biological data, the chemical data detect

a dramatic early effect but do not clearly indicate other deviations from the control occurring later in the

test. The photosynthesis/respiration ratio (Figure 8a) clearly illustrates an effect during the early segment

of the experiment. On day 53 one of the treatment groups exceeds the IND but by itself this could be

classified as a rare event, not truly statistically significant. Again pH (Figure 8b) demonstrates the early

deviation and suggests a late effect as the treatment groups exceed the IND.

Figure 9. Significance levels of the three multivariate statistical tests for each sampling day. Note that

there are two periods, early and late ones, where the clustering into treatment groups is significant at the

95 percent confidence level or above.

Figure 10. Cosine distance from the control group to each of the treatments for each sampling day. Note

that large differences are apparent early in the SAM. During the middle part of the 63 day experiment the

distances between the replicates of Treatment 1, the control group, is as large as the distances to the

treatment groups. However, later in the experiment the distances from the dosed microcosms to the

control again increase.
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Abstract

Ecological studies and multispecies ecotoxicological tests are based on the examination

of a variety of physical, chemical and biological data with the intent of finding patterns in

their changing relationships over time. The data sets resulting from such studies are often

noisy, incomplete, and difficult to envision. We have developed machine learning and

visualization software to aid in the analysis, modelling, and understanding of such systems.

and have applied it to the analysis of lake and stream field studies, and aquatic microcosm

toxicological tests. The software is based on nonmetric conceptual clustering, which

attempts to analyze the data into clusters that are strongly associated with several

measured parameters. We have found in many cases that this approach is superior to

classical clustering algorithms, all of which rely on an n-dimensional metric (or similarity

measure). In each case, our tools not only confirmed suspected ecological patterns, but also

revealed aspects of the data that were unnoticed by ecologists using conventional statistical

techniques. Machine learning tools should, accordingly, become a standard part of the

ecologist's armamentarium.

Introduction

Understanding ecosystems requires the solution of novel data analysis problems.

Typically, dozens to hundreds of species, as well as many physical and chemical parameters.

are sampled in natural and artificial systems. These parameters not only change over time, but

sampling limitations necessitate acquiring only a few samples, resulting in shallow data

matrices with many dimensions, but few points. The essential task of computational

assistance, then, is to reduce the dimensionality and aid in the interpretation of these data

sets. Nonmetric conceptual clustering was designed for these kinds of data (Matthews and

Hearne, 1991). It simultaneously reduces both the complexity and the dimensionality of the

set of data points. The complexity is reduced by grouping the points into clusters. The

dimensionality of the data is reduced by selecting only parameters that fit well with the

generated clusters. Random or noisy parameters are ignored. The ability to evaluate a model
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of the data simultaneously on several different fitness criteria gives nonmetric conceptual

clustering its strength.

We have applied nonmetric clustering successfully in multispecies field and laboratory

studies, and in each case we have not only confirmed the presence of suspected patterns, but

also discovered aspects of the data that were unnoticed by ecologists (Landis et al.. 1993:

Matthews et al.. 1991a: Matthews et al.. 1991b). In addition, these patterns were usua!ly

overlook• •. by conventional statistical techniques. In this sense, the software has stepped

beyond the role of traditional expert systems, which merely mimic human expertise. and into

the role of a machine learning system: a computer system that can learn things about the data

that a human cannot. Such systems bring a new kind of power to human investigators,

expertise that is beyond their own ability but which can form part of a valuable partnership.

We present here a summary of the nonmetric conceptual clustering approach, some

results stemming from applications in ecology and ecotoxocology, and our attempts to extend

the applicability of the nonmetric clustering paradigm to system dynamics.

Nonmetric Clustering

Nonmetric clustering is similar to conceptual clustering in that the clustering is

designed, not only to fit the data. but also to create a simple and conceptual description of the

data (Michalski and Stepp, 1983: Fisher and Langley, 1986). The goal of nonmetric clustering

is a partition of the data into disjoint and exhaustive subsets (the clusters) such that most of

the points can be described by simple conjunctive descriptions involving some of the original

parameters (canonical dimensions, i.e. without rotation, etc). For example, if a large number

of the points (cluster A). in dimensions z. y, and z. had "medium", "small", and -large"

values, respectively, and another large number of points (cluster B), had "large". "medium-.

and "medium" values on these same dimensions, then the points could be described by the two

concepts:

Cluster A: ý* (x = medium) A (y = small) A (z = large)

3



Cluster B: -• (x = large) A (y = medium) A (z = viedium)

If these two sets of points comprised nearly all of the original data. then the clustering would be

complete. There may be other dimensions in the original data set, other than x, y, and z. but

these dimensions would be regarded as irrelevant to the above clustering if x, y, and z sufficed.

To this end, the nonmetric clustering algorithrP. performs a (nonexhaustivc' search

through the space of all clusterings (partitions) of the data, and all divisinns of the parameters

into categories (e.g., "small", "medium", and "large"), and all subsets of parameters. The

search terminates when it finds a clustering, parameter subset, and categorical division. such

that the fit to the data cannot be improved. Naturally, the space of partitions and divisions is

too large to be searched exhaustively. Accordingly, a hill-climbing algorithm is employed,

starting from a random partition and quantile divisions of the dimensions. The search is then

repeated, starting from a different random initialization, to avoid local maxima. In our

experience with both synthetic and real data, about ten repetitions are sufficient to avoid local

maxima. The algorithm has beei, implemented in a computer program called Riffle, together

with a graphical front end for viewing the results.

Nonmetric clustering has the following advantages over some conventional 1lustering

methodologies:

"* It works well with incomplete data, where several points may have missing values for a

few dimensions.

"* It works equally well with categorical, ordinal, and numeric dimensions.

"* It does not require ad hoc modifications of the numeric dimensions, such as normalizing

the variance

"* It does not rely on a metric, such as the Euclidean metric, which will combine

parameters by sums of squares or other mathematical methods.
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* It has the ability to ignore noisy parameters, i.e. parameters with a large variance but

random with respect to the overall pattern. Size of the variance is not taken into account

since all values on all dimensions are merely regarded as small, medium. or large.

The clustering itself is informative, but Riffle actually provides the user with more than a

traditional clustering algorithm. It also reports a list of the parameters that have a strong

association with the clusters is also revealing. This list, which is a subset of all of the

parameters, records only those that are important or significant in relation to the patterns in

the data. Parameters that vary randomly are automatically be excluded from the list.

There are a number of synthetic data sets on which Riffle can outperform traditional

clustering algorithms (Matthews and Hearne, 1991). However, the most amazing successes

with Riffle have been in the analysis of ecological and ecotoxicological data sets, which we

describe in the following sections.

Aquatic Ecology

In both lake and stream studies. Riffle has succeeded in obtaining intuitively

meaningful clusters. In a one-year study of benthic macroinvertebrates in a small stream.

Riffle grouped the samples exactly as a human expert would have done, one group consisting of

"clean" water samples (mayflies, stoneflies, etc.), and another group consisting of "dirty" water

samples (flies, oligochaetes, etc.) (Matthews et al.. 1991a). Several rare species were found to

have high association with these clusters, and thus were reported by Riffle as important to the

overall pattern. But these same species had been overlooked as important indicator species

because of their rarity. The samples were collected over an entire season. and included both

low-density and high-density samples as the benthos matured over the summer. Standard

clustering techniques were confounded by this seasonal variance and grouped the samples into

"early" and "late" samples. without regard to the fine structure of the populations.

In a multi-year study of physical/chemical parameters in a large monomictic lake.

Riffle accurately clustere--i samples according to season into summer epilimnion and
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hypolimnion, as well as winter mixed water samples (Matthews et al., 1991b). In a result

surprising to the investigators, it also identified a fourth class of samples. Upon

reinvestigating, we noticed that this class had actually been sampled from within the

metalinmion-an unforeseen accident of the experimental design. Further clustering by Riffle

of the biological data showed a strong correlation with the clustering of the physical/chemical

parameters. Conventional clustering algorithms were not able to identify these patterns.

Ecotoxicology

Riffle has also been successful in analyzing data from synthetic microcosms, in

particular, the Standardized Aquatic Microcosm, or SAM (Taub, 1989). In the SAM,

twenty-four jars of water are prepared identically with several species of algae, Daphnia, and

other biota. The jars are divided into four treatment groups, normally a control and three

increasingly toxic doses. The jars are monitored closely for two months and population counts

for all species, as well as physical/chemical parameters, are recorded every few days. Nonmetric

clustering by Riffle can often pick out the four treatment groups from the biological data alone.

Under controlled situations, such as the SAM, nonmetric clustering can form the basis

of a confirmatory statistical test, which we have termed nonmetric clustering and association

analysis (NCAA). In this case, the known treatment groups form one categorical label, and the

cluster numbers form another. (Sometimes, although by no means always, the treatment

groups form an ordinal, and not merely categorical variable.) The association between

treatment group and cluster number forms the basis of a confirmatory statistic: under the null

hypothesis, there would be no association. Any contingency table test, such as the X2 test, can

then be used to obtain a confidence level.

Nonmetric clustering consistently reveals aspects of the SAM microcosms that are

hidden from other tests. Since Riffle reduces the dimensionality of the SAM by indicating

which species are important on which days of the test, it gives the practitioner a good handle

on how the populations respond to the toxin. Quite often one species will be important early
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in the test, of little importance during the middle period, and then important again later. We

have also noticed "chaotic" trends in the evolution of the SAM. For instance, in at least two of

the experiments, the treated groups diverged significantly from the control group, and then, by

about the end of the first month. "recovered" to a state indistinguishable from the control

group. However. during the second month. the treatment groups again diverged, in a

dose-response fashion. This indicates that. during the putative recovery period, the systems

were nonetheless quite different, and were able to diverge later. This is symptomatic of chaotic

systems, where imperceptible differences in initial conditions can lead to radically different

behavior subsequently.

Other Applications

Riffle is currently being applied to a wide variety of data analysis problems. We are

currently beginning an investigation into the toxicity of refinery effluents, using measurements

required by the National Pollution Discharge Elimination System (NPDES). Also, in

cooperation with Dr. Anne Fairbrother of the U.S.E.P.A., Corvallis, we are applying Riffle to

studies of biomarkers of toxicological impacts on mice and birds. Other researchers have

applied Riffle to medical diagnosis problems.

Future Directions: Temporal Dynamics

As well as Riffle works in analyzing data, it is essentially static. Many of the effects seen

in ecological data analysis are dynamic-an effect may be simply a time delay, for example.

Further, oscillations, such as those in the predator-prey models, can be expected, as well as

chaotic dynamics. We are beginning to apply the lessons learned from nonmetric clustering to

the analysis of dynamic multivariate data. Some of our approaches are outlined below.

Discrete curvature and torsion: The path of an ecosystem through n-dimensional space

over time can be viewed as a parameterized curve. Using analogies of the Frenet formulas

(O'Neill. 1966. pp. 56-66), discrete analogues of the fundamental vectors, velocity,

curvature, torsion etc.. can be defined and used to characterize the evolution of the
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system.

Nonmetric clustering strain: The key idea behind nonmetric clustering strain is to

measure the change in nonmetric clustering from one time slice to the next. By

examining how nonmetric clusters of the points change over time, measures of the size

and direction of the change can be obtained.

Conceptual shift: When performing conceptual clustering the important parameters usually

change over time. Thus, not only do the points change their relationships, but the

conceptual descriptions of the points can use a different vocabulary at different times.

The measure of how the "best" description changes over time gives us another handle on

understanding dynamic behavior.

Visualization: We are also investigating graphical visualization of the evolution of systems in

n-dimensional phase space over time. The curvature, torsion, clustering shift and

conceptual shift can all be visualized with interactive computer graphics. Projection

pursuit and grand tour algorithms can be used to maximize the visibility of desired

quantities (Asimov, 1985; Huber, 1985). Critical points, at which the behavior of the

systems becomes "interesting," can then often be found by inspection.

Conclusions

Our program attempts to understand multivariate data on its own terms. To this end.

we have built and applied nonmetric clustering and visualization tools that reduce the

dimensionality and complexity of multispecies systems to a manageable size. Other attempts

have been made to understand ecosystems in terms of multivariate response, but the responses

were usually measured using n-dimensional metrics (JohnsoN, 1988; Kersting, 1988). We have

seen repeatedly that metric approaches suffer from a large number of drawbacks when dealing

with ecological data. The approach recommended here is free from any metric (or similarity

measure) and its problems.
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Recently, the U.S. Environmental Protection Agency has instituted a policy that calls

for the cancellation of multispecies toxicity tests because data analysis has proven too difficult

or inconclusive (Fisher, 1992). We believe that the problem is not with the multispecies tests.

which are carefully designed to be more realistic than classic, single-species tests, but rather

with the poor quality of the data analysis tools that are applied to the results of these tests.

So far as we know, we are the only group in the United States applying the methodologies of

machine learning to multivariate ecological and ecotoxicological studies, and we are seeing

results that greatly enhance our understanding of the systems and their dynamics. Interest in

our techniques at national toxicological conferences is always high, and we are convinced that

the machine learning paradigm will revolutionize ecology and ecotoxicology in the near future.
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Multivariate Analysis of JP-4 Toxicity

2
1 Abstract: Turbine fuels are often the only aviation fuel available in most of the world. Turbine fuels

2 consist of numerous constituents with varying water solubilities, volatilities and toxicities. This study

3 investigates the toxicity of the water soluble fraction (WSF) of JP-4 using the Standard Aquatic Microcosm

4 (SAM). Multivariate analysis of the complex data, including the relatively new method of nonmetric

5 clustering, was used and compared to more traditional analyses. Particular emphasis is placed on

6 ecosystem dynamics in multivariate space.

7 The WSF is prepared by vigorously mixing the fuel and the SAM microcosm media in a separatory

8 funnel. The water phase, which contains the water-soluble fraction of JP-4 is then collected.

9 The SAM experiment was conducted using concentrations of 0.0, 1, 5 and 15 percent WSF. The

10 WSF is added on day 7 of the experiments by removing 450 mL from each microcosm including the

11 controls, then adding the appropriate amount of toxicant solution and finally bringing the final volume to 3L

12 with microcosm media. Analysis of the WSF was performed by purge and trap gas chromatography

13 (Figure 2). The organic constituents of the WSF were not recoverable from the water column within

14 several days of the addition of the toxicant. However, the impact of the WSF on the microcosm was

15 apparent. In the highest initial concentration treatment group an algal bloom ensued, generated by the

16 apparent toxicity of the WSF of JP-4 to the daphnids. As the daphnid populations recovered the algal

17 populations decreased to control values. Multivariate methods, clearly demonstrated this initial impact

18 along with an additional oscillation separating the 4 treatment groups in the latter segment of the

19 experiment. Apparent recovery may be an artifact of the projections used to describe the multivariate

20 data. The variables that were most important in distinguishing the four groups shifted during the course of

21 the 63 day experiment. Even this simple microcosm exhibited a variety of dynamics, with implications for

22 biomonitoring schemes and ecological risk assessments.

23
24 Key Words-Jet fuel, microcosm, multivariate statistics, nonmetric clustering, risk assessment



Multivariate Analysis of JP-4 Toxicity

3
1 Introduction

2 As this is written, the United States Environmental Protection Agency has suspended the requirement

3 for conducting ecosystem level studies for pesticide registration (Fisher, 1992). Although many factors

4 contributed to the action, apparently the field and pond mesocosm tests that were conducted did not

5 contribute to the evaluation of risk of pesticides in a timely and cost effective manner.

6 Over the last 15 years a variety of muitispecies toxicity tests have been developed with the hope that

7 in doing so, the increased complexity of the test would result in more realistic, community-level responses

8 to the toxicant. However, the addition of more than one species, and the generally longer time periods

9 associated with these multispecies tests, also result in much more complex data sets. Distinguishing

10 toxicant effects from other community-level changes has become one of the most critical obstacles to the

11 interpretation of multispecies data sets.

12 Multispecies toxicity tests are usually referred to as microcosms or mesocosms, although a clear

13 definition of the size or complexity to distinguish these terms has not been put forth. Multispecies toxicity

14 tests range from approximately 1 L (e.g., mixed flask cultures) to thousands of liters, as in the case of the

15 pond mesocosms used in pesticide registration testing. The number of species and origin of those taxa

16 can vary widely. In the Standardized Aquatic Microcosm (SAM) developed by Taub and colleagues

17 (Taub, 1969, 1976; Taub and Crow, 1978; Crow and Taub, 1979; Taub et a., 1980; Kindig, 1983; Taub,

18 1987; Taub, et at, 1988; Taub, 1988, 1989; Conquest and Taub, 1989) the physical, chemical, and

19 biological components are defined as to species, media and substrate (see Table 1 and Figure 1). In

20 other systems colonization by the importation of sediment or by repeated inoculation from a natural

21 source is used to establish the model system. Larger systems often use a combination of means to start

22 and maintain a multispecies, interactive community.

23 One of the major difficulties in the evaluation of multispecies toxicity tests has been the difficulty in the

24 analysis of the large data set on a level consistent with the goals of the toxicity test. Typically, the goals

25 of the toxicity test are:

26
27 * to detect changes in the population dynamics of the individual taxa that would not be apparent in

28 single species tests; and,

29 0 to detect community-level differences that are correlated with treatment groups thereby

30 representing a deviation from the control group.

31
32 A number of methods have been developed to attempt to satisfy the goals of multispecies toxicity

33 testing. Analysis of variance (ANOVA) is the classical method to examine single variable differences from

34 the control group. However, because multispecies toxicity tests generally run for weeks or even months,

35 there are problems with using conventional ANOVA. These include the increasing likelihood of

36 introducing a Type II error (accepting a false null-hypothesis), temporal dependence of the variables, and
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1 the difficulty or graphically representing the data set. Conquest and Taub (1989) developed a method to

2 overcome some of the problems by using intervals of non-significant difference (IND). This method

3 corrects for the likelihood of Type II errors and produces intervals that are easily graphed to ease

4 examination. The method is routinely used to examine data from SAM toxicity tests, and it is applicable to

5 other multivariate toxicity tests. The major drawback is the examination of a single variable at a time over

6 the course of the experiment. While this addresses the first goal in multispecies toxicity testing, listed

7 above, it ignores the second. In many instances, comrmunity-level responses are not as straightforward

8 as the classical predator/prey or nutrient limitation dynamics usually picked as examples of single-species

9 responses that represent complex interactions.

10 Multivariate methods have proved promising as a method of incorporating all of the dimensions of an

11 ecosystem. One of the first methods used in toxicity testing was the calculation of ecosystem strain

12 developed by Kersting (1984, 1985, 1988) for a relatively simple (three species) microcosm. This method

13 has the advantage of using all of the measured parameters of an ecosystem to look for treatment-related

14 differences. At about the same time, Johnson (1988a. 1988b) developed a multivariate algorithm using

15 the n-dimensional coordinates of a multivariate data set and the distances between these coordinates as

16 a measure of divergence between treatment groups. Both of these methods have the advantage of

17 examining the ecosystem as a whole rather than by single variables, and can track such processes as

18 succession, recovery and the deviation of a system due to an anthropogenic input.

19 Hov' ,ver, a major disadvantage of both these methods, and of many conventional multivariate

20 methods, is that all of the data are often incorporated without regard to the units of measurement or the

21 appropriateness of Including all variables in the analysis. It can be difficulty to combine variables such as

22 pH, with units ranging from 0-14, with the numbers of bacterial cells per rm, where low numbers are in the

23 106 range, to say nothing of the conceptual difficulties of adding pH units to counts. Similarly, random

24 variables (i.e., variables with not treatment-related response) indiscriminately incorporated into the

25 analysis may contribute so much noise that they overshadow variables that do show treatment-related

26 effects.

27 Ideally, a multivariate statistical test used for evaluating complex data sets will have the following

22 characteristics:

29
30 * It will not combine counts from dissimilar taxa by means of sums of squares, or other ad hoc

31 mathematical techniques, as in the Euclidean and cosine distance measures.

32 * It will not require transformations of the data, such as normalizing the variance.

33 & It will work without modification on incomplete data sets.

34 0 It will work without further assumptions on different data types (e.g., species counts or

35 presence/absence data).

36 • Significance of a taxon to the analysis will not be dependent on the absolute size of its
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1 count, so thattaxa having a small total variance, such as rare taxa. can compete in

2 importance with common taxa, and taxa with a large, random variance will not

3 automatically be selected, to the exclusion of others.

4 a It will provide an interorn' measure of 'how good* the analysis is, i.e. whether the data set differs

5 from a random collection of points.

6 * It will, in ~rme cases, identity a subset of the taxa that serve as reliable indicators of the

7 physkr31 environment.

8
9 Recently developed for the analysis of ecological data, nonmetric clustering is a multivariate

10 derivative of artificial intelligence research that satisfies all these criteria, and has the potential of

11 circumventing many of the problems of conventional multivariate analysis.

12 In this paper, we use ANOVA and intervals of non-significant difference, and three multivariate

13 techniques to search for meaningful patterns in the data set from a SAM toxicity test using Jet-A turbine

14 fuel. The multivariate techniques include two conventional tests based on the ratio of multivariate metric

15 distances (Euclidean distance and cosine of the vector distance), and one relatively new program,

16 RIFFLE, which employs nonmetric clustering and association analysis (Matthews and Hearne, 1991). All

17 three of the multivariate techniques have proven useful in analyzing complex ecological data sets

18 (Matthews et al., 1991; Matthews et at, 1991). Of the three, only nonmetric clustering meets all of the

19 criteria listed above (Matthews and Matthews, 1991). The major disadvantage of the RIFFLE program is

20 that, in order to find a clustering of the data points with the desirable qualities listed above, a massive

21 search through thousands of potential clustering candidates is made before settling on the "right" one.

22 Even after this search, there is no guarantee that RIFFLE finds an optimal clustering. However, in our

23 experience, RIFFLE dbes find an excellent clustering in reasonable time.

24 Jet fuels or perhaps more accurately, turbine fuels, are one of the primary fuels 1or internal

25 combustion engines worldwide and certainly are the most widely available aviation fuel. Over the last 15

26 years virtually all of ths! commercial airline operations and charter operations have converted to a turbine

27 engine because of the inherent low operating cost of the power plant, its reliability, and in part to the

28 availability of fuel even in underdeveloped areas. In the U.S. military there has been a progressive

29 replacement of conventional piston engine vehicles with turbine equivalents. Standardization on a single

30 type of turbine fuel to relieve logistical demands is also underway. Given the overwhelming

31 predominance of turbine fuel, a fuel spill or accidental release of aviation fuel will likely be one of the

32 prevalent turbine fuels: Jet-A, used for commercial and general aviation; JP-4, the standard fuel of the

33 U.S. Air Force and Army Aviation; and JP-5, the naval equivalent of JP-4. JP-8 is a new fuel proposed as

34 the standard for all military vehicles using turbine engines.

35 Along with the environmental considerations, turbine fuels also offer advantages as model complex

36 toxicants for toxicological research. Because of their use as aviation fuel, turbine fuels are produced to



Multivanate Analysis of JP-4 Toxicity

6

1 stringent specifications designed to ensure the safety of flight. Therefore, the overall general properties of

2 these materials are tightly controlled. In addition, standard archived samples of the military fuels are

3 maintained for toxicological studies at Wright Patterson, AFB. Jet fuels also tend to be less explosive and

4 also less volatile than gasoline, making the materials easier and safer to use. Like all petroleum products,

5 however, the exact identity of the constituents varies according to the original crude and the refining

6 process.

7 This paper reports the effects of low concentration of the water soluble fraction of JP-4 on the

8 community incorporated in the SAM. The effects of the WSF on the microcosm communities were subtle.

9 An early increase in algal density was apparent in the treatment groups containing the highest

10 concentrations of the WSF and was matched by a decrease in daphnid populations. Multivarate analysis

11 proved to be more powerful and efficient in highlighting important variables and processes than ANOVA.

12 The variables that were most important were those distinguishing where treatment-related effects shifted

13 during the course of the experiment. The multivariate analysis also detected oscillations in the similarity

14 of the control and dosed groups that were not apparent using conventional univariate tests. The

15 oscillations may be due to the inherent perturbations in community dynamics and interactions, or the

16 effects upon the segments of the community not directly measured, the bacterial detritivores. We also

17 discuss the implications of this research with regards to the use of indices and the conduct of

18 environmental risk assessments.

19

20 Methods and Materials

21 Reagents

22 All chemicals used in the culture of the organisms and in the formulation of the microcosm media

23 were reagent grade or as specified by the ASTM method.

24 JP-4 was supplied by the U. S. Air Force Toxicology Laboratory at Wright Patterson, AFB Ohio.

25
26 Water Soluble Fraction

27 The water soluble fraction of JP-4 was prepared in glassware washed in nonphosphate soap, rinsed,

28 then soaked in 2N HCI for at least one hour, rinsed ten times with distilled water, dried and finally

29 autoclaved for 30 minutes. Microcosm medium, T82MV, acted as the diluent for the water fraction of the

30 WSF.

31 Twenty five mL of JP-4 is added to the two liter separatory funnel, and is agitated as follows:

32 [11 Shake separatory funnel for five minutes, releasing built up pressure as necessary, [2] allow funnel

33 contents to remain undisturbed for 15 minutes, 131 shake contents for five minutes, allow to stand 15

34 minutes, [4] continue same pattern for a total time of 1 hour, and finally [5] allow separatory funnel

35 contents to remain undisturbed for eight hours. At the end of this procedure the mixture was allowed to

36 stand ovemight. The next day all but 100 mL of T82MV/water soluble fraction of jet fuel mixture from the
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1 separatory funnel (leaving the lighter, insoluble fuel mixture in the flask) was drained into a cleaned,

2 sterile I liter amber glass bottle and capped with a Teflon-lined screw cap. The WSF was used within

3 twenty-four hours or stored at 40C for no longer than forty-eight hours before use as t3xicant mixture.

4

5 Gas Chromatography of WSF

6 This protocol utilizes a Tekmar LSC 2000 Purge and Trap (P&T) concentrator system in tandem with

7 a Hewlett Packard 5890A Gas Chromatograph with a Flame Ionization Detector (FID) ( ASTM D3710,

8 1988; ASTM D28o/, 1988; Westendorf, 1986). Instrument blanks and deionized distilled water blanks are

9 used to verify the P&T and GC columns cleanliness prior to analysis of samples. A five mL sample is

10 injected into a five milliliter sparger, purged with pre-purified nitrogen gas for eleven minutes and dry

11 purged for four minutes. Volatile hydrocarbons, purged from the sample and collected on the Tenax/Silica

12 Gel column, are desorbed at 1 800C directly onto the gas chromatograph SPB-5, 30m x 0.53 mm ID

13 1.5pro film, fused silica capillary column. The column, at 350C, is held at that temperature for two

14 minutes, increased to 2250C at 120C/min and held at that temperature for five minutes. A Spectra-

15 Physics 4290 Integrator records the FID signal output of the volatile hydrocarbons that have been

16 separated and eluted from the column by molecular weight.

17

18 Identification and quantification of GC fractions

19 Oualitative identification of some components in the water soluble fraction (WSF) of the JP-4 fuel,

20 used as the toxicant In the microcosm test, were determined using a Simulated Distillation (SIMDIS)

21 Calibration Mixture. The ASTM Method D3710 Qualitative Calibration Mixture is the standard test method

22 for determining the Boiling Range Distribution of Gasoline and Gasoline Fractions by Gas

23 Chromatography. This mixture was used as a calibration standard to determine the retention times for

24 each known component in the mixture against which unknown components, in the WSF of the Jet fuel

25 mixture, were compared and identified.

26 Quantitative estimates of some components of the WSF were made by comparing sample

27 chromatographs to certified n-paraffin and n-naphtha chromatograph standards, prepared and analyzed

28 under the same P&T/GC conditions.

29

30 Algal Toxicity Tests

31 In order to estimate the relative toxicities of the JP-4 mixture and to set the concentrations for the

32 microco~sm a series of short-term toxicity tests were performed (ASTM E 1218, 1991). Algal growth

33 inhibition tests were performed using Ankistrodesmus falcatus and Selenastrurn capnicomutum strains

34 identical to those used in the SAM toxicity tests,

35 Test algae were grown in a semi-flow through culture apparatus on the microcosm media T82MV and

36 taken during log phase growth fcr inoculation into the test flasks. Two hundred and fifty (250) ml
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1 Erlenmeyer flasks were used as test chambers, with serial dilutions of the water soluble fraction at

2 concentrations of 0.0, 6.25, 12.5, 25, 50 and 100 percent then placed in the flasks. The test organisms

3 were added at a concentration of approximately 3.0 x 104 cells/mL. Total volume was 100 mL with two

4 replicates of controls and the test concentrations used. Test mixtures will be incubated at 20.0°C ± 1.01C

5 with a 12:12 hour light/dark cycle. Using a Newbauer Counting Chamber, cell densities were determined

6 every 24 hrs for the 96 hr duration of the test.

7 The cell numbers are then plotted against the concentrations. If possible, a least square regression

8 fine was drawn and the IC50 (the concentration at which algal growth is inhibited to 50% of the control)

9 determined. ANOVA is then run on the replicates to determine if any of the groups are significantly

10 different.

11

12 SAM Protocol

13 The 64-day SAM protocol previously has been described (ASTM E 1366-91, 1991). Table 1

14 describes the organisms, conditions and modifications of ASTM E1366-91 for this particular experiment.

15 Briefly, the microcosms were prepared by the introdu"tion of ten algal, four invertebrate, and one bacterial

16 species into 3 L of sterile defined medium. Test containers were 4 L glass jars. An autoclaved sediment

17 consisting of 200 g silica sand and 0.5 g of ground chitin is autoclaved in the experimental jar immersed

18 in a water bath to a point above the sand and chitin level during sterilization. This procedure helps

19 prevent breakage of the jars and subsequent loss of replicates.

20 Numbers of organisms, dissolved oxygen (DO) and pH were determined twice weekly. Room

21 temperature was 20°C ± 20. Illumination was 79.2 ILEm"2 sec-1 PhA with a range of 78.6-80.4 and a

22 16/8 day/night cycle.

23 Two major modifications were made to the SAM protocol. The first was the means of toxicant

24 delivery. Test material was added on day 7 by stirring each microcosm, removing 450 mL from each

25 container and then adding appropriate amounts of the WSF to produce concentrations of 0, 1, 5 and 15

26 percent WSF. After toxicant addition the final volume was adjusted to 3L No attempt was made to filter

27 and retain the organisms withdrawn during the removal of the 450 mL prior to toxicant addition. All

28 graphs and statistical analysis start with the first sampling day, day 11.

29 The second modification was the substitution of Tetrahymena thermophila BIV for the hypotrichous

30 ciliate used in past experiments. The hypotrichous ciliate was becoming increasingly difficult to culture,

31 very likely due to the age of the clone. T. thermophila has routinely been used in biochemical research

32 and In detoxification studies of organophosphates (Landis et al. 1985, 1987, 1991). Using SAM controls,

33 constructed prior to this experiment, it was demonstrated that the T. thermophila populations were able to

34 exist within the system. T. therrvphila are maintained sterilly in a 3 percent proteous peptone distilled

35 water media at 200C with routine biweekly transfers to perpetuate the stocks. The results presented

36 below demonstrate the suitability of the Tetrahymena for inclusion in the protocol.
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1 Data Analysis -

2 All data were recorded onto standard computer entry forms and checked for accuracy. The data was

3 then keyed into the SAMS data analysis program and checked for accuracy. Parameters calculated

4 included the concentrations of each of the species, DO, DO gain and loss, net

5 photosynthesis/respiration ratio (P/R), pH, algal species diversity, algal biovolume, and biovolume of

6 available algae. The statistical significance of these parameters compared to the controls was also

7 computed for each sampling day using the Interval of Non-significant Difference (IND) plots developed by

8 Conquest. Note that algal biovolume, algal species diversity and available algae are all derived variables

9 based on the algal counts. The net photosynthesis/respiration ratio is not derived using 1 4 C methods but

10 by comparing oxygen concentrations before lights on, at the end of the photosynthetic period, and then at

11 the next morning, as specified in the standard protocol. Photosynthesis/respiration ratio was the variable

12 used during the analysis to incorporate these measurements.

13 The multivariate methods used in the analysis include cosine and vector distances and nonmetnc

14 clustering. All of these methods have been previously described (Matthews et aL, 1991; Landis et aL,

15 1993, Landis et aL, 1993 ) and are reviewed in Appendix A. Table 2 lists the variables used in the

16 clustering process.

17

18 Results
19 Algal Toxicity Results. The WSF of JP-4 was not particularly toxic when used as a percentage (v/v)

20 of the total culture media. As determined by graphical analysis, since 100 percent inhibition was not

21 achieved, the IC50 for Ankistrodesmus was 57 percent WSF and for Selenastrum 95 percent WSF.

22 Persistence of the JP-4 WSF. Seven compounds, benzene, 2,4 dimthylpentane, ethylbenzene, 2-

23 methylpentane, 2-methylpropane, o-xylene and toluene, were tracked using GC analysis during the

24 course of the SAM experiment. Figure 2 Is an area graph that presents both the concentrations of the

25 individual components along with the totals of these seven materials In microcosms of Treatment 4. As

26 can be readily seen, 504 hrs after dosing, the relative concentrations of these materials have rapidly

27 disappeared. After week three, only 2-methylpentane and 2-methylpropane are detectable. Since only

28 the 2-methylpropane is present 672 hours after dosing, this material may be the final biodegradative

29 product of the absorbed fraction of the WSF, and is being investigated in more detail.

30 Patterns in Algal Communities. The largest increase in algal population density occurred in treatment

31 4 (Figure 3). The peak density Is approximately twice that of the control replicates at day 21. After the

32 initial bloom in treatment 4, no particular dose-related pattern is discernible. Lyngbya makes up a

33 substantial portion of the algal community in each treatment group, which is historically unusual. Algal

34 species diversity also generally declines in each of the treatment groups, but in a general sense not

35 related to dose.

36 Daohnid Ponulations. Each of the treatment groups exhibited similar dynamics (Figure 4). None of



Multivariate Analysis of JP-4 Toxicity
10

1 the groups were statistically different from the control groups using conventional analysis of variance

2 approaches. Minor perturbations in the timing of the peaks may have occurred, but by day 50 the means

3 of each group were very similar.
4 Ostracod Populations. At the end of the experiment, the average population density in the control

5 treatments is approximately twice that of treatment 4. the highest toxicant concentration (Figure 5).

6 Population density in the two treatment groups with the highest toxicant concentrations, decline below the

7 no dose treatment and the lowest treatment densities. This pattern is apparent graphically from day 53

8 onward. Conventional analysis such as the IND plot does not pick any date as significantly different from

9 the control. The probability of the order remaining consistent on five consecutive dates by chance alone

10 and assuming independence is small ((0.25)4)4).

11 Philodina and Tetrahvmena Ponulations. Tetrahymena survived in each of the treatment groups until

12 near the end of the experiment (Figure 6a). No specific dose related pattern was apparent although a two

13 sampling period bloom (days 25 and 27) was apparent for Treatment 2. Unfortunately the error in

14 sampling and the inherent asynchrony in Protistan reproduction prevented the result from being

15 detectable using conventional methods. Philodina did not appear in appreciable numbers until after day

16 25 in any of the treatments. Day 53 showed a dramatic increase in treatments 3 and 4 followed by a

17 decline, so that by day 60 all treatments were similar. Although suggestive, the results are not significant;

18 the large overlap of the standard deviation apparent (Figure 6b). The difficulty in sampling rapidly growing

19 and declining populations in asynchronous growth is apparent. Although trends may be suggested,

20 conventional analysis does not detect a significant effect.

21 rH and PhotosvnthesistResgimtion ratio. Treatment 4 pH did exhibit a statistically significant

22 difference from the other treatments during the period of the algal bloom during the first ten days after

23 dosing (Figure 7a). On day 49 a deviation from the control in a dose response manner was detected.

24 However with the multiple comparisons being made it is difficult to attribute such an event to the

25 treatment. At the end of the experiment all of the groups resembled reference treatment.

26 The photosynthesis/respiration ratio (Figure T7) did not exhibit statistically significant differences

27 during the course of this experiment.

28 Muftivariate results. The significance levels for the three multivariate tests performed for each

29 sampling day are graphed in Figure 8. All tests agree, that a significant difference between treatment

30 groups was observed through day 25. Nonmetric clustering demonstrated fluctuations in this significance

31 from day 25 until 40, and from 40 until the end of the experiment. The cosine vector and Euclidean vector

32 methods were statistically significant until after day 53.

33 In Figure 9, the average cosine distances within the reference group and between the reference

34 group and each of the three treatment groups are plotted on a log scale. The initial, strong effect, from

35 day 11 to day 25, is easily seen as a large distance from the reference treatment I (no dose) and

36 treatment 4 (highest dose). The period from day 25 to 30 reflect another more subtle oscillation that is
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1 statisticallysignifioant using cosine vector and Euclidean vector clustering. From day 35 to day 46 the

2 distances from treatment I to the other treatments are similar to the within treatment 1 distances and the

3 nonmetric clustering does not detect a significant difference. A third period of separation from the control

4 that is statistically significant using the distance measures, from day 46 to 53, is seen for the JP-4 SAM.

5 Also of interest are the variables that best described the clusters and the stability of the importance of

6 the variables during the course of the experiment. Table 3 lists the variables determined to be important

7 in defining the clusters of importance for each sampling day as determined by nonmetric clustering. In

8 general, the number of variables that were important was larger during the start of the test and lower at

9 the end. In addition, a great deal of variability in rankings is apparent during the course of the SAM. The

10 number of sampling dates when a variable was deemed important in cluster formation is listed in Table 4.

11 Chlorella and S. Daphnia were ranked 8 out of the 16 sampling dates with Ankistrodesrnus ranked 6 out

12 of 16, being ranked in 12 out of the 16 sampling dates. The distribution of ranks was rather even although

13 variables such as Tetrahymena and Ulothrix did not appear.

14 The timing of each variable gaining importance in the determination of clusters was also interesting.

15 Ostracods and Philodina were important after day 32 of the experiment, as were small Daphnia. Chlorella

16 was selected as a significant variable throughout the course of the experiment.

17
18 Discussion

19 The examination of individual parameters provided only a limited and somewhat distorted view of the

20 dynamic responses of the SAM system to JP-4. The univariate data did show that there was some

21 significant responses to the toxicant as determined by the chemistry. Biological data, taken individually,

22 did not demonstrate a coherent and unified picture of the response of the biota to JP-4. The biological

23 responses that were most evident were of only dramatic impacts, such as the increase in the algal

24 populations due to the inhibitory effect of the JP-4 upon the grazer populations. Axiomatically, an

25 inhibition of the predominant grazer in the early stages of the microcosm, the Daphnia, is going to result in

26 an algal bloom. These types of responses do not provide a depth of understanding of the function and

27 structure of the artificial ecosystem. In contrast to the biological data, pH did demonstrate some

28 statistically significant differences using the IND methodology that hinted at an early major impact in

29 treatment 4 and a later divergence. It is likely that pH is measuring an alteration in the metabolism of the

30 system and therefore a change in the functionality, but without structural differences it is difficult to

31 attribute the functional differences to structural alterations.

32 The multivariate analyses of the structural data revealed patterns not observed using the univariate

33 analysis of the biotic data. Three oscillations from the non dosed treatment I could be observed that

34 were statistically significant. Two of these oscillations correspond well to the divergences seen in the pH

35 analysis. However in the divergences seen between days 25-30 and 50-55 (Figure 9), suggestions of a

36 dose-response can be seen that are not apparent in the pH data. It is important that these oscillations
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1 were observed after the demise of the original WSF mixture, no doubt lost to volatilization or

2 biotransformation and degradation by the biota.

3 A similar set of results have been obtained for a related toxicant, Jet-A (Landis et al., 1993). In a

4 virtually identical experiment, univariate methods were able to demonstrate alteration in the grazer

5 (daphnid)-algal dynamics and in two functional measures, pH and P/R ratio. Subsequent departures of

6 the dosed treatments from the non dosed treatments were not observed using the biotic measures.

7 However, the functional measures, pH and P/R, both demonstrated an additional divergence for one

8 sampling date in the latter half of the microcosm experiment. However, the univariate analysis does not

9 corroborate these results and they may have been dismissed as chance occurrences without the

10 multivariate analyses.

11 The multivariate analyses depicted at least two statistically significant oscillations using all three

12 measurement techniques. As with the Jet-A, the original WSF mixture had rapidly decreased in

13 concentration during the first few week after dosing.

14 A detailed comparison of the dynamics of the two SAM experiments is currently underway to compare

15 similarities and differences in the multivariate space of the impacts of the two mixtures. However,

16 changes in the structural composition the systems did occur repeatedly during the course of the

17 experiments even in these relatively simple systems. These oscillations point to effects not readily

18 observed or predicted by single species systems. The repeated divergence of the dosed systems from

19 the reference systems can be accounted for in two ways:

20
21 - It may reflect the functioning of the community in terms of parameters not d.;ectly sampled by the

22 SAM protocol.

23

24 - It may be a persistent fluctuation in the community structure initiated by the initial stress, but is only

25 periodically visible, as if it were an incompletely dampened nonlinear oscillation in the systems! inherent

26 dynamics.

27

28 Examination of individual parameters provides only a limited, and somewhat distorted view of the

29 SAM microcosm response to the WSF of each fuel. The univariate data analysis did indeed show that

30 there were some significant responses to the toxicant by individual taxa and chemistry; however, the

31 responses were scattered over time, and did not present a logical, coherent pattern. Furthermore, the

32 individual responses detected were typified by wild swings In the population density of a taxon over time.

33 If you kill or restrict the reproduction of most of the Daphnia, the next microcosm response is likely an

34 algal bloom. This result could Is easily have been predicted by the short term toxicity tests and was

35 expected. However, recent modeling efforts by Taub et al. (submitted) suggest that the dynamics of

36 these interactions and the resulting magnitudes of the algal blooms are highly dependent upon the timing
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1 of the toxic insult. Measuring these types of gross responses to the toxicant do not provide much more

2 insight into impact of the toxicant in the ecosystem than do the short-term single-species tests. The

3 absolute magnitude of the disturbance and the period of recovery can be obtained from the microcosm

4 experiment, in the sense of a classical predator prey interaction. However, the multivariate analysis

5 reveals a more interesting dynamic.

6 The multivariate patterns suggest a much more complex pattern of multiple divergences and

7 convergences in the similarities between treatment groups. Much as an ecosystem could be expected to

8 display the rise and fall of species assemblages, the SAM microcosms appear to indicate that the first

9 divergence is only the beginning of a series of responses.

10 Using nonmetric clustering, we can list the variables that were the most important for separating the

11 treatment group clusters for each day that measurements were collected (Table 3). The list of variables

12 suggests that the first divergence, which occurred from about day 11 through day 25, results from

13 predator/prey interactions between primary producers (algae) and first order consumers (daphnia). This

14 divergence should be characterized by the following properties:

15
16 - The divergence will be fast, because the algae and daphnia populations are introduced into the

17 microcosm after being cultured in optimal laboratory conditions and then placed into cultures with high

18 available nutrient concentrations. Predation, or the lack of predation, or other limiting factors will cause

19 rapid changes in the algal and herbivore populations.

20
21 • The divergence will be short-lived, because the populations are unstable in the nutrient rich early

22 successional microcosm. There will be a tendency for the microcosms to drift away from the early

23 "treatment" effect into a more typical community based on both algae and detritus as the food source for

24 the secondary consumers. Initially, this drift may mask treatment effects and be interpreted as recovery of

25 the system.

26
27 The first divergence is the only type of response that is normally searched for in microcosm tests

28 using conventional statistics. This response is typical of many reported SAM experiments (Taub et al.,

29 1988; Taub, 1988; Haley etaaL, 1988; Landis et al., 1989).

30 The second and third divergences occurred from between days 25-30 and 50-55. During this time,

31 Daphnia and some of the algal taxa were often still important in the cluster development; however, other

32 secondary consumers (Ostracods and Philodina) entered the list. The second divergence may represent

33 the long-term effects of the initial toxicant on a more successionally mature community that is fueled by

34 both algal productivity and detritus. If so, the resulting divergences should have the following

35 characleristics:

36
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1

2 * It should be strongly influenced by detritus quality. Detritus is conditioned by bacteria and fungi, which

3 are highly sensitive to toxins but are unmeasured in the microcosm. Also, detritus that has passed

4 through the gut of a consumer (e.g., consumed algae) is different than detritus that originates directly from

5 dead algae (unconsumed). Therefore, the quality of the detritus may be highly affected by the treatment,

6 but none of the factors influencing the effects will be measured directly.

7

8 * Secondary consumers of detritus and bacteria are no less affected by the quality of their food source

9 than algal consumers, so the treatment-related alterations of the quality of detritus and bacteria will cause

10 differences in the secondary consumer populations.

11

12 Therefore, the series of divergences following the initial algal-daphnid interaction may still represent

13 a direct response to the initial treatment effects, but because it occurs late in the microcosm experiment, it

14 is easily misinterpreted as noisy or the effects of a degradation product. An inclusion of measures of

15 detritus quality and microbial metabolism may answer these questions and such studies are currently

16 being incorporated into our series of microcosm experiments.

17 Invoking unseen properties of an ecosystem or other mechanistic explanations may not be needed to

18 explain the occurrence of oscillations and divergences from a non-dosed reference system. An

19 altemative and complimentary explanation is available that perhaps describes the dynamics of

20 multispecies systems at a more fundamental level.

21 First, the apparent recovery or movement of the dosed systems towards the reference or treatment 1

22 case may be an artifact of our measurement systems that allow the n-dimensional data to be represented

23 in a two dimensional system. In an n-dimensional sense, the systems may be moving in opposite

24 directions and simply pass by similar coordinates during certain time intervals. Positions be similar but

25 the n-dimensional vectors describing the movements of the systems can be very different.

26 The apparent recoveries and divergences may also be artifacts of our attempt to chose the best

27 means of collapsing and representing n-dimensional data into a two or three dimensional representation.

28 In order to represent such data, it Is necessary to project n-dimensional data into three or less

29 dimensions. As information is lost when the shadow of a cube is projected upon a two dimensional

30 screen, a similar loss of information can occur in our attempt to represent n-dimensional data. The

31 possible illusion of recovery based on this type of projection is diagramatically represented In Figure 10.

32 In Figure 1Oa the dosed and the reference systems appear to converqe, I. e. recovery has occurred.

33 However, this may be an illusion created by the perspective chosen to describe and measure the system.

34 Figure 1Ob is the same system but viewed from the "top". When a new point of view Is taken, divergence

35 of the systems occurs throughout the observed time period. As the various groups separate, the

36 divergence may be seen as a separate event. In fact, this separation is a continuation of the dynamics
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1 initiated earlier upon one aspect of the community. Eventually, the illusion of recovery may simply be the

2 divergence of the replicates within each treatment group becoming large enough, with enough inherent

3 variation, so that even the multivariate analysis can not distinguish treatment group similarities. Not every

4 divergence from the control treatment may have a causal effect related to it in time; differentiating these

5 events from those due to degradation products or other perturbations will be challenging.

6 Not only may system recovery be an illusion but there are strong theoretical reasons that seem to

7 indicate that recovery to a reference system may be impossible or at least unlikely. In fact, systems that

8 differ only marginally in their initial conditions and at levels probably impossible to measure, are likely to

9 diverge in unpredictable manners. May and Oster (1978) in a particularly seminal paper investigated the

10 likelihood that many of the dynamics seen in ecosystems, generally attributed to chance or stochastic

11 events, are in fact deterministic. In fact simple deterministic models of populations can give rise to

12 complicated behaviors. Using equations resembling those used in population biology, bifurcations occur

13 resulting with several distinct outcomes. Eventually, given the proper parameters, the system appears

14 chaotic in nature although the underlying mechanisms are completely deterministic. Obviously, biological

15 systems have limits, extinction being perhaps the most obvious and best recorded. Another ramification

16 is that the noise in ecosystems and in sampling may not be the result of a stochastic process but the

17 result of underlying deterministic, but chaotic relationships.

18 These principals also apply to spatial distributions of populations as recently reported by Hassell et aL

19 (1991). In a study using host-parasite interactions as the model, a variety of spatial patterns were

20 developed using the Nicholson-Bailey model. Host-parasite interactions demonstrated pattems ranging

21 from static 'crystal lattice' patterns, spiral waves, chaotic variation or extinction with the appropriate

22 variation of only three parameters within the same set of equations. The deterministically determined

23 patterns could be extremely complex and not distinguishable from stochastic environmental changes.

24 Given the perhaps chaotic nature of populations it may not be possible to predict accurately species

25 presence, population interactions, or structural and functional attributes. Kratz et at. (1987) examined the

26 spatial and temporal variability in zooplankton data from a series of five lakes in North America. Much of

27 the analysis was based on limnological data collected by Brige and Juday from 1925 to 1942. Copepods

28 and cladocera, except Bosnina, exhibited larger variability between lakes than between years in the

29 same lake. Some taxa showed consistent patterns among the study lakes. They concluded that the

30 controlling factors for these taxa operated uniformly in the each of the study sites. However, in regards to

31 the depth of maximal abundance for calanoid copepods and Bosmina, the data obtained from one lake

32 had little predictive power for application to other lakes. Part of this uncertainty was attributed to the

33 intrinsic rate of increase of the invertebrates with variability increasing with a corresponding increase in

34 rmax. A high rmax should enable the populations to accurately track changes in the environment. Katz et

35 al. suggest that these taxa be used to track changes in the environment. Unfortunately, in the context of

36 environmental toxicology, the inability to use one ',-ke to predict the non-dnsed population dynamics of
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1 these organisms In another, reduces the sensitivity of methods that use comparisons of two systems as

2 measures of anthropogenic imri;,ts.

3 A better strategy may be to let the data and a clustering protocol identify the important parameters in

4 determining the dynamics of and impacts to ecological systems. This approach has been recently

5 suggested independently by Dickson et al. (1992) and Matthews and Matthews (Matthews et aL, 1991;

6 Matthews and Matthews, 1991). This approach is in direct contrast to the more usual means of assessing

7 anthropogenic impacts. One classical approach is to use the presence or absence of so called indicator

8 species. This assumes that the tolerance to a variety of toxicants is known and that chaotic or stochastic

9 influences are minimized. A second approach is to use hypothesis testing to differentiate metrics from the

10 systems in question. This second approach assumes that the investigators know a pror the important

11 parameters. Given that, at least in our relatively simple SAM systems, the important parameters in

12 differentiating non-dosed from dosed systems changes from sampling period to sampling period, this

13 assumption can not be made. Classification approaches such as nonmetric clustering or the canonical

14 correlation methodology developed by Dickson et al. eliminates these assumptions.

15 The results presented in this report combined with the others cited above and the implications of

16 chaotic dynamics suggest that reliance upon any one variable or an index of variables may be an

17 operational convenience that may provide a misleading representation of pollutant effects and the

18 associated risks. The use of indices such as diversity and the Index of Biological Integrity have the effect

19 of collapsing the dimensions of the descriptive hypervolume in a relatively arbitrary fashion. Indices, since

20 they are composited variables, are not true endpoints. The collapse of the dimensions that are

21 composited tends to eliminate crucial information, such as the inherent variability, and its importance in

22 describing these variables. The mere presence or absence and the frequency of these events can be

23 analyzed using techniques such as nonmetric clustering that preserve the nature of the dataset. A useful

24 function was certainly served by the application of Indices, but the new methods of data compilation,

25 analysis and representation derived from the Artificial Intelligence tradition can now replace these

26 approaches and Illuminate the underlying structure and dynamic nature of ecological systems. In the next

27 18 months RISC based computers will make these approaches widely available at the desMop level.

28 The Implications are important. Currently, only small sections of ecosystems are monitored or a

29 heavy reliance Is placed upon, so-called, indicator species. These data suggest that, to do so is

30 dangerous, potentially producing misleading interpretations and resulting in costly error in management

31 and regulatory judgments. Much larger toxicological test systems are currently analyzed using

32 conventional statistical methods on the limit of acceptable statistical power. Interpretation of the results

33 has proven to be difficult.

34 The dynarnics observed in our experiments and in the research discussed above ,hould make

35 obvious that a metaphor such as ecosystem health is inappropriate and misleading. In a recent critical

36 evaluation, Suter (1993) dismissed ecosystem health as a misrepresentation of ecological science.
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Ecosystems are not organisms with the patterns of homeostasis determined by a central genetic core.

2 Since ecosystems are not organismal in nature, health is a property that can not describe the state of

3 such a system. The urge to represent such a state as health has lead to the compilation of variables with

4 different metrics, characteristics and casual relationships. Suter suggests a better alternative would be to

5 evaluate the array of ecosystem processes of interest, with an underlying understanding that the

6 fundamental nature of these systems are quite different than those of organisms.

7 One of the ongoing debates in environmental toxicology has been the suitability of the extrapolation

8 and realism of the various multispecies toxicity tests that have been developed over the last 15 years.

9 One of the major criticisms of small scale systems is that the low diversity of the system is not

10 representative of natural systems in dynamic complexity (Sugiura, 1992). Given the above discussion

11 and the conclusions derived from it much of this debate may have been misdirected. The small scale

12 systems used in our study have been demonstrated to express complex dynamics. Kersting and Van

13 Wungaarden (1992) found that even the three compartment microecosystem, as developed by Kersting

14 (1984, 1985, 1988), expresses indirect effects as measured by pH changes after dosing with

15 chloropyrifos. Since even full scale systems can not serve as reliable predictors of the dynamics of other

16 full scale systems, it is impossible to suggest that any artificially created system can provide a generic

17 representation of any full scale system. Debate should probably revert to more productive areas such as

18 improvements in culture, sampling and measurement techniques or other characteristics of these

19 systems. A more worthwhile goal is probably the understanding of the scaling factors, in a fug n-

20 dimensional representation, that should enable the accurate representation of specific ecosystem

21 characteristics. Certain aspects of a community may be included in one system to answer specific

22 questions that in another system would be entirely inappropriate. If questions as to detritus quality are

23 important then the system should include that particular component. In other words, the system should

24 attempt to answer the particular scientific question.

25 Several questions are now the goals of future research. The dynamics of the loss of jet fuels from

26 the SAM systems is currently being investigated in greater depth. Additional data should indicate the

27 persistence of the constituents and help aid in the determination of initial toxicity, including further

28 information from literature searchs or using quantitative structure activity relationship models. Additional

29 testing of related materials is being conducted. Finally, questions as to the effects of size and community

30 structure abound. The SAM system is relatively simple. Data sets incorporating more diverse species

31 assemblages and of varying sizes are being investigated for comparison.

32
33
34 Conclusions

35 1. Effects are seen in the microcosm study that can only in part be attributed to the differential

36 toxicity. At least three oscillations are distinguishable from the reference system related to treatment.
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2 2. Multivariate analysis is crucial in observing effects with typically noisy datasets and points to the

3 dynamic nature of the variables important in distinguishing the four treatment groups.

4

5 3. Two general hypotheses are proposed to account for the observed dynamics of the system. The

6 oscillations may be result of structural and functional components not measured, such as detrital

7 processing and quality. The second and not exclusive hypothesis is that the oscillations are due to the

8 inherent chaotic nature of ecosystems and may propagate in an unpredictable fashion over time.

9
10 4. The implications of these results is that reliance upon indices that condense data or upon indicator

11 species may be misleading in determining effects of stressors upon biological communities. A strategy

12 providing better resolution in determining ecosystem impacts may be the sampling of a broader set of

13 variables, accepting the variability inherent in sampling, since it may be impossible due to the nature of

14 the system to predict relevant measurements. If it is inherently impossible to predict the relevant

15 parameters, only an examination of a compendium of data from the system is likely to reliably measure

16 effects.

17

18 5. If multiple undampened oscillations and chaotic dynamics characterize ecosystems then concepts

19 such as ecosystem health and ecosystem recovery should be eliminated or redefined. Chaotic systems

20 are unlikely to exhibit characteristics that correspond to the health at the organismal level. Similarly,

21 recovery of a system to a preexisting state may be impossible or highly unlikely.

22

23 Appendix A. Multivarlate Technlques-Nonmetrlc Clustering

24 In the research described above, three multivariate significance tests were used. Two of them were

25 based on the ratio of multivarate metric distances within treatment groups vs. between treatment groups.

26 One of these is calculated using Euclidean distance and the other with cosine of vectors distance (Good,

27 1982; Smith et al., 1990). The third test used nonmetric clustering and association analysis (Matthews

28 and Matthews, 1990). In the microcosm tests there were four treatment groups with six replicates, giving

29 a total of 24. This example is used to illustrate the applications in the derivations that follow.

30 Treating a sample on a given day as a vector of values, i = (xI .... X17), with one value for each of

31 the measured biotic parameters, allows multivarlate distance functions to be computed.

32 Euclidean distance between two sample points i and Y is computed as

33

34 (x5-

35
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1 The cosine of the-vector distance between the points i and Y is computed as

2

3 1-
21 2

4
5 Subt, Acting the cosine from one yields a distance measure, rather than a similarity measure, with the

6 measure increasing as the points get farther from each other.

7 The within-between ratio test used a complete matrix of point-to-point distance (either Euclidean or

8 cosine) values. For each sampling date, one sample point i was obtained from each of six replicates in

9 the four treatment groups, giving a 24 x 24 matrix of distances. After the distances were computed, the

10 ratio of the average within group metric (MN to the average between group metric (B) was computed

11 (WIB). If the points in a given treatment group are closer to each other, on average, than they are to

12 points in a different treatment group, then this ratio will be small. The significance of the ratio is estimated

13 with an approximate randomization test (Noreen, 1989). This test is based on the fact that, under the null

14 hypothesis, assignment of points to treatment groups is random, the treatment having no effect. The test,

15 accordingly, randomly assigns e=ch of the replicate points to groups, and recomputes the W1B ratio, a

16 large number of times (500 in our tests). If the null hypothesis Is false, this randomly derived ratio wil

17 (probably) be larger than the W/B ratio obtained from the actual treatment groups. By taking a large

18 number of random reassignments, a valid estimate of the probability under the null hypothesis is obtained

19 as (n,+1)1(500+1), where n is the number of times a ratio less than or equal to the actual ratio was

20 obtained (Noreen, 1989).

21 In the clustering association test, the data are first clustered independently of the treatment group,

22 using nonmetric clustering and the computer program RIFFLE (Matthews and Heam, 1991). Because the

23 RIFFLE analysis is naive to treatment group, the clusters may, or may not correspond to treatment

24 effects. To evaluate whether the clusters were related to treatment groups, whenever the clustering

25 procedure produced four clusters for the sample points, the association between clusters and treatment

26 groups was measured in a 4 x 4 contingency table, each point in treatment group I and cluster j being

27 counted as a point in frequency cell ii. Significance of the association in the table was then measured with

28 Pearson's X2 test, defined as

29

30 n,

31
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1 where Nijis the actual cell count and nijis the expected cell frequency, obtained from the row and column
2 marginal totals N+j and Ni+ as

3

n = N.N.
4

5
6 where N - 24 is the total cell count (Press et aL, 1990), and a standard procedure for computing the

7 significance (probability) of Z2 taken from Press (1990).
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1 Table 1. Summary of Test Conditions for Conducting SAM JP-4.
2
3 Organisms
4 Organisms per chamber: f.lgae (added on Day 0 at initial concentration of 103 cells for
5 each algae species): Anabaena cylindrica,
6 Ankistrodesmus sp.,
7 Chlarmydomonas reinhardi 90,
8 Chlorella vulgans,
9 Lyngbya sp.,

10 Scenedesmus obliquus.
11 Selenastrum capnicomutumr
12 Stigeoclonium sp., and Ulothfix sp.
13 Animals (added on Day 4 at the initial numbers indicated in
14 parentheses): Daphnia magna (1 6/microcosm), Cypridopsis sp.
15 (ostracod) (6/microcosm), Tetrahymena thermophila [protozoa]
16 (0.1/mL), and Philodina sp. (rotiter) (0.03/mL)
17
18 Experimental design
19 Test vessel type and size: One-gallon (3.8 L) glass jars16.0 cm wide at the shoulder, 25 cm
20 tall with 10.6 cm openings
21
22 Medium volume: 3000 mL added to each container
23
24 Number of replicates x concentrations: 6x4
25
26 Reinoculation: Once per week add one drop (circa 0.05 mL) to each microcosm
27 from a mix of the ten species - 5 x 102 cells of each alga added
28 per microcosm
29
30 Addition of test materials: Test material added day 7 by removing 450 mL from each
31 container and then adding appropriate amounts of the WSF to
32 produce concentrations of 0, 1, 5 and 15 percent WSF. After
33 toxicant addition the final volume was adjusted to 3L.
34
35 Sampling frequency: 2 times each week
36
37 Test duration: 63 days
38
39 Physical and chemical parameters
40 Temperature: 20 to 250C
41
42 Light intensity: 80 I±E mi 2 photosynthetically active radiation s-1 (850 to 1000 fc)
43
44 Photoperiod: 12 h light/12 h dark
45
46 Medium: Medium T82MV
47
48 Sediment: Composed of silica sand (20o g3 ground, crude chitin (0.5), and
49 cellulose powder (0.5 g) added to each container
50
51 Measurements: Algal, invertebrate and protozoa counts, pH, dissolved oxygen,
52 optical den.ity, Parameters calculated included the
53 concentrations of each of the species, DO, DO gain and loss,
54 net photosynthesis/respiration ratio (P/R), pH, algal species
55 diversity, daphnid fecundity, algal biovolume, and biovolume of
56 available algae.
57
58
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1 Table 2. Biotic parameters used in the multivariate statistical tests. Biotic variables such as diversity,

2 available biovolume, and total algal biovolume are not used since they are derived from and therefore not

3 independent of the variables listed above.
4
5 Anabaena

6 Ankistrodesmus
7 Chlamydomonas
8 Chlorella
9 Daphnia

10 Ephipia
11 Small Daphnia
12 Medium Daphnia
13 Large Daphnia
14 Tetrahymena
15 Lyngbya
16 Miscellaneous sp.
17 Ostracod (Cyprinotus)
18 Philodina (Rotifer)
19 Scenedesmus
20 Selanastrum
21 Stigeoclonium
22 Ulothrix
23
24
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1 Table 3. Important variables as determined by nonmetric clustering ranked according to contribution for
2 each sampling day. Some variables such as Ankistrodesmus were important in determining group
3 clusters in the first half of the experiment. Some of the variables such as Ostracod and Eflodina were
4 more important in the latter stages of the experiment. Note that the order of importance of even the more
5 common contributors often changed from sampling day to sampling day, with no one variable being
6 consistently ranked, Chlorella and S. Daphnia being the closest.

7
8 Day Important Variables in Determining Clusters in Rank Order

9 11 Selanastrum, M. Daphnia, ChMorella, Ankistrodesmus

10 14 Selenastrum, S. Daphnia, M. Daphnia-Ankistrodesmus 1 , L. Daphnia-Stigeoclonium

11 18 Scenedesmus, Selanstrum, Ankistrodesmus, S. Daphnia, Chlorella, L. Daphnia

12 21 Scenedesmus, Ankistrodesmus, Chlamydomonas

13 25 Chlorella, S. Daphnia

14 28 Chlorelia, Ankistrodesmus-Lyngbya, Plnoudina

15 32 Ostracod

16 35 Ostracod, Eflodina, Scenedesmus

17 39 Scenedesmus, S. Daphnia

18 42 Lyngbya, S. Daphnia, Philona. Ankistrodesmus

19 46 M. Daphnia

20 49 Scenedesmus, Chlorella, PEflIdina

21 53 Chlorella, Eflodina

22 56 M. Daphnia-S. Daphnia

23 60 S. Daphnia, Ostracod, Lyngbya

24 63 Chloreila, S. Daphnia, M. Daphnia, Lyngbya

25
26 1 Hyphen between variables denotes equal rank

27



Multivariate Analysis of JP-4 Toxicity
24

1 Table 4. Variable According to Success in Determining Clusters as Defined by Nonmetric Clustering.
2 Variables such as Ankistrodesmus and the Daphnia classes were important in the course of this study.
3 However, reliance on any particular organism or a small combination would have poorly described the
4 dynamics of the system.

5

6 Variable Ranked

7 Chlorella 8

8 S. Daphnia 8

9 Ankistrodesmus 6

10 Scenedesmus 5

11 Philodina 5

12 M. Daphnia 4

13 Lyngbya 4

14 L. Daphnia 3

15 Ostracod 3

16 Selenastrum 3

17

18
19
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1
2 Figures
3
4 Figure 1. Timeline for the Standardized Aquatic Microcosm JP-4 Experiment. Each step of this 63 day

5 protocol is choreographed according to ASTM E 1366-91. The modifications to the protocol are the

6 elimination of Nitchia, Hyalella azteca, modification of the method for toxicant delivery and the

7 substitution of T. thermophila BIV for the hypotrichous ciliate.

8
9 Figure 2. Purge and Trap Gas Chromatography Results for the WSF of JP-4. A substantial reduction in

10 the number and concentration of the WSF constituents is apparent two weeks after dosing in Treatment

11 4. At the end of the SAM experiment the fractions are at relatively low concentrations.

12

13 Figure 3. Patterns in Algal Communities. The largest increase in algal population density occurred in

14 treatment 4 (Figure 3d). The peak density is approximately twice that of the control replicates at day 21.

15 After the initial bloom in treatment 4 no particular dose-related pattern is discernible.

16
17 Figure 4. Daphnid Population Dynamics. Each of the treatment groups exhibited similar dynamics

18 (Figure 4). None of the groups were statistically different from the control groups using conventional

19 analysis of variance and IND approaches. Minor perturbations in the timing of the peaks may have

20 occurred, but by day 49 the means of each group a very similar.

2,
22 Figure 5. Ostracod Population Dynamics. The average population density in the control treatments is

23 approximately twice that of Treatment 4, the highest concentration. In between, the populations densities

24 are ranked in a dose response manner. Although suggestive and not readily apparent in the other

25 biological data, the apparent dose response falls within the IND plot surrounding the control. The bars are

26 standard deviations for the means of each sampling day. An IND is approximately 2.5 times the standard

27 deviation.

28
29 Figure 6. Tetrahymena and Philodina Population Dynamics. The population dynamics of the Philodina

30 suggest a treatment effect towards the end of the experiment. As with the ostracods the sampling error is

31 too large to distinguish such an effect using conventional univariate techniques. The bars are standard

32 deviations for the means of each sampling day. An IND is approximately 2.5 times the standard deviation.

33
34 Figure 7. pH. Treatment 4 pH did exhibit a statistically significant difference from the reference treatment

35 during the period of the algal bloom during the first ten days after dosing (INDL - IND upper limit, INDV =

36 IND upper limit). On day 49 an additional deviation from the control in a dose response manner was
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1 detected.

2

3 Figure 8. Significance levels of the three multivariate statistical tests for each sampling day. Note that

4 there are two periods, early and late ones, where the clustering into treatment groups is significant at the

5 95 percent confidence level or above.

6

7 Figure 9. Cosine distance from the control group to each of the treatments for each sampling day. Note

8 that large differences are apparent early in the SAM. During the middle part of the 63 day experiment the

9 distances between the replicates of Treatment 1, the control group, is as large as the distances to the

10 treatment groups. However, later in the experiment the distances from the dosed microcosms to the

11 control again increase followed by another apparent convergence.

12

13 Figure 10. Diagrammatic representation of ecosystem movements in ecosystem space. In Figure 10a

14 the dosed and the reference systemns appear to converge, i. e. recovery has occurred. However, this may

15 be an illusion of the variables chosen to describe the system. Figure 1 Ob is the same system but viewed

16 from the "topo. When a new point of view is taken, divergence of the systems occurs throughout the

17 observed time period.
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2 Abstract: Ecological risk assessment has evolved so that the interaction among the components is now

3 an implicit assumption. Unlike single species based risk assessments, it is often crucial in environmental

4 or ecological risk assessments to be able to describe a system with many interacting components. In

5 addition, some quantifiable description of how different biological communities are upon the addition of a

6 toxicant or some other stressor is required to adequately describe risk at the ecosystem level. Three

7 methods have been applied at the ecosystem ieve, !iae mnean s-Zain measurement used by K. Kersting,

8 the state space analysis pioneered by A.R. Johnson, and the nonmetric clustering developed by G.

9 Matthews for ecological datasets and for analysis of Standardized Aquatic Microcosm data. Each

10 method has direct application to the description of an effected ecosystem without reliance upon a single

S1 and specific and perhaps misleading endpoint. Each also can assign distance or probability measures in

12 order to compare the control to treatment groups. Nonmetric clustering (NMC) has the advantage of not

13 attempting to combine different types of scales or metrics during the multivariate analysis and is robust

14 against interference by random variables. Application of these methodologies into an ecological risk

15 assessment should have the benefit of combining large interactive datasets into distinct measures to be

16 used as a measure of risk and as a test of the prediction of risk. The primary impact of these methods

17 may be in the selection and interpretation of assessment and measurement endpoints.

18 Much recent debate in toxicological studies has focused on appropriate endpoints for tests. Nonmetric

19 clustering and other multivariate techniques should aid in the selection of these endpoints in ways

20 meaningful at the ecosystem level. We suggest that the search for assessment and measurement

21 endpoints be left to the appropriate multivariate computation algorithms in the case of multispecies

22 situations. Application of these methods in the verification, validation process of risk assessment will

23 prove to check the selection of endpoints during modeling exercises and to improve the presentation of

24 assessment criteria.

25

26 Key Words: Risk assessment, multivariate statistics, nonmetric clustering, measurement and

27 assessment endpoints, artificial intelligence.



3

1 Ecological Risk Assessment Defined

2 Ecological risk assessment is essentially the art of extrapolating from relatively straight-forward

3 information on how toxic a compound is to specific organisms to how complex assemblages of organisms

4 will respond to the toxin in their natural environment. The traditional approach to ecological risk

5 assessment was developed by the National Academy of Science (NAS) using a human health effects

6 paradigm. The NAS model is described in detail in Risk Assessment in the Federal Government:

7 Managing the Process (1), also known as the "red book." The NAS approach uses a four-point approach:

8 a) The initial hazard identification, which determines whether a chemical is capable of causing

9 adverse health effects. This conclusion is based on laboratory animal studies and, where available,

10 human data;

11 b) The dose-response assessment, which characterizes the relationship between the chemical

12 dose and the incidence of adverse health effects in the exposed population;

13 c) The exposure assessment, which measures or estimates the intensity, frequency, and duration

14 of human exposure to a chemical, or estimates hypothetical exposure; and

1i d) The risk characterization, which combined the dose-response and exposure assessments. This

16 final step evaluates the uncertainties in the previous analyses and provides an estimate of the likelihood

17 of adverse effects under the stated conditions.

18 The NAS paradigm was developed to assess the risks of chemicals to human health, and while many

19 of its principles can be implemented dirdRctly in ecological risk assessment, it falls short when applied to

20 non-chemical stressors or interdependent organisms. Furthermore, it does not even begin to address the

21 links between organisms and their environment. Hazard identifications are complicated by the many

22 metabolic and degradation pathways available in the environment. Changes in these pathways can occur

23 naturally, as a result of spatial and temporal changes in species assemblages, but can also be induceu

24 as a reult of the introduction of a xenobiotic. Exposure assessments are complicated by the

25 extraordinary array of species present at the exposure sites. The species composition also changes as a

26 result of natural forces (seasonality, stochastic extinctions, migrations, etc.) or the introduction of a

27 xenobiotic. Because of this, ecological risk assessment must be recognized as being fundamentally

28 different from human health risk assessments (2).

29

30 Ecological Risk Assessment Models - Review of the USEPA Framework

3 1 Many of the difficulties in applying the traditional risk assessment paradigm to ecosystems have been

32 addressed in the recent formulation of a Framework for Ecological Risk Assessment (3) (Figure 1).

33 Among the novel features of this framework is the integration of exposure and hazard assessment to

34 reflect the interactions that occur in ecological systems. Also innovative is the inclusion of a Data

35 Acquisition, Verification and Monitoring process within the framework. The key however, is the selection



4

1 of assessment and measurement endpoints to make the assignment of risk representative of the system

2 under protection.

3 The USEPA Framework includes three steps: problem formulation, analysis, and risk

4 characterization.

5 Problem formulation is the process that evaluates the characteristics of the stress-inducing agent

6 (e.g., toxin). It also identifies the ecosystem that may be at risk, and identifies possible ecological effects.

7 This information is used to select the ecosystem components or attributes of concern (the assessment

8 endpoints) and to determine the best ways to describe this component or attribute (measurement

endpoints). Finally, the assessor prepares a conceptual model that describes the ways in which the

10 stressor could interact with the ecosystem and the likely effects of such an interaction. Problem

11 formulation is not specifically discussed in the NAS paradigm, but in current practice these issues are

12 addressed during planning.

13 The analysis phase contains two components: characterization of exposure and characterization

14 of ecological effects. The exposure characterization determines stressor distribution, characterizes

15 receptors, and quantifies stressor release, migration, and fate. The effects characterization evaluates

16 effects data and response data such as stressor-response analysis (akin to the dose-response

17 assessment described above), the relationship between endpoints, and evidence of causality. This phase

18 is analogous to the hazard identification, dose-response and exposure assessment components of the

19 NAS paradigm.

20 The risk characterization component differs little from its counterpart in the NAS paradigm. It tests

21 the hypotheses developed in the conceptual model described in Problem Formulation by synthesizing

22 information about the stressor and receptor from various sources and describing the supporting evidence

23 for (and uncertainty associated with) conclusions. It also provides some indication of the likelihood of

24 effects occurring and describes the ecological significance of any predicted risk.

25

26 Endpoint Selection-Ecological Risk Assessment

27 Endpoints (assessment and measurement) are the keystones of an ecological risk assessment as

28 every other parameter in the process is predicated upon these terms. An assessment endpoint must be

29 something specific and quantifiable such as "maintenance of sport fish populations" or "desertification" or

30 "eutrophication." Values such as "ecosystem health" have littte meaning (2) and cannot be easily

31 described. Sometimes it is not possible to examine the assessment endpoint directly--for example. one
32 cannot collect bald eagle livers and analyze them for enzyme induction. In this case, measurement
33 endpoints are used to describe the organism or entity of concern. Continuing with the bald eagle
34 example, one may wish to examine contaminant concentrations in the eagles' food and compare them to
35 laboratory dose-response data, observe their feeding habits and construct exposure scenarios, and

36 review liver-enzyme data from other eagles (in captivity or found dead) or other birds of prey to arrive at
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1 conclusions about enzyme induction in local eagles. In the ecosystem sense, measures of species

2 number, abundance or energy flow would be analogous.

3 The USEPA Framework recommends that assessment endpoint selection consider 1) ecological

4 relevance, 2) policy goals and societal values, and 3) susceptibility to the stressor. To ensure that

S ecological relevance is addressed, one must have some a priori knowledge of the ecosystem of interest

6 and the relationships between its components. Science must not take a back seat to policy and societal

7 values, but communication between the risk assessor and risk manager is critical to ensure scientific

8 integrity and satisfy policy needs. Finally, the strongest assessment endpoints are both affected by the

9 stressor and sensitive to a specific type of effect caused by that stressor.

10 Measurement endpoints should be selected on the basis of how well they represent assessment

11 endpoints. Practicality and consistency with exposure scenarios often determine the initial range of

12 possibilities. Measurement endpoints must be correlated with or useful for inferring changes in

13 assessment endpoints (4). To the extent possible, they should be selected for appropriate diagnostic

14 ability, signal-to-noise ratio, sensitivity, and response time. Ideally, measurement endpoints also provide

15 information about indirect effects such as toxicity to an organism upon which the species of interest preys

16 or nutrient cycle inhibition reducing survivorship of fingerlings.

17 An ecological risk assessment is only as good as the data upon which it is based. Thus, data

18 acquisition is an integral part of the risk assessment process. Endpoints can and generally should

19 change with time. At any stage in ecological risk assessment, new data may reveal that a particular

20 endpoint should be added or removed, or that it no longer provides relevant information. For example,

21 tree seedling success may be an important measure in managed ecosystems or when bare or disturbed

22 soil is being colonized, but it provides little information about old-growth forests. Similarly, a measure of

23 biomass in an aquatic system may provide a good indication of overall productivity, but it probably will not

24 contain enough information to determine whether a balanced assemblage of functional groups

25 (shredders, filter-feeders, etc.) exists. Preliminary data needs should be outlined during the Problem

26 Formulation and refined as needed during the rest of the risk assessment process. For example, the

27 assessor may discover that the assessment endpoint initially selected is affected less by the stressor

28 being evaluated than by other causes, such as widespread habitat loss or overlishing--this may require

29 selection of another assessment endpoint. Similarly, as the assessment progresses, it may become

30 evident that additional measurement endpoints are needed. Increasingly, the use of multivariate data

31 analysis is being called upon to assist in identifying appropriate endpoints for ecological risk assessments.

32
33 Importance of Multivariate Data In Ecological Risk Assessments

34 One important feature of ecological risk assessments is that they generally must rely on multivariate

35 data to identify natural and toxicant-induced patterns. This is a result of the multidimensional nature of

36 ecosystems; the Hutchinsonian idea of organisms and populations residing in a n-dimensional
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1 hypervolume is the basis of current niche theory (5). The n-dimensional hypervolume is the ecosystem

2 with all its components as perceived by the population. The variability of these parameters over time as

3 well is used to account for the variety of species within the ecosystem system (6,7,8). Applications of

4 resource competition models have been proposed for evaluating even single-species toxicant effects (9).

5 Therefore, in order to begin to describe an ecosystem's response to perturbation, we must recognize the

6 system's multidimensional nature.

7 Our essential goal in multivariate data analysis is to identify ecologically relevant patterns in the data

8 set. This is true regardless of whether our ultimah. goal is to develop an ecological risk assessment or to

9 evaluate naturally occurring changes in the ecosystem. However, until recently, the data reduction tools

10 available to aid our analyses have consisted primarily of simple graphs (lots of them), simple statistical

I I tests done repeatedly to accommodate all of the measured parameters, and a few truly multivariate

12 statistical tests that generated useful but esoteric results. For example, analysis of variance (ANOVA) is

13 the classical method to examine single variable differences from control groups or reference sites.

14 However, in multivariate data, there are problems with Type II errors. Furthermore, it is difficult to display

15 and assimilate the many ANOVA results that are generated from a multivariate data set. Conquest and

16 Taub (10) developed a method to overcome some of these problems by generating intervals of non-

17 significant difference for a single variable measured repeatedly over time. This method corrects for the

18 likelihood of a Type II error and produces a visual display of significant vs. nonsignificant differences that

19 is easily graphed. The major drawback to this method is that it only portrays changes in single variables

20 over time.

21 Multivariate methods have proved promising as a method of incorporating all of the dimensions of an

22 ecosystem. One of the first to be used in toxicology was the calculation of ecosystem strain developed by

23 Kersting (11,12,13,14) for relatively simple (three species) microcosms. At about the same time,

24 Johnson (15,16) developed a multivariate clustering algorithm to map the n-dimensional coordinates of an

25 ecosystem and used the distance between these systems as a measure of divergence from the control.

26 Both of these methods have the advantage of examining the multispecies test systems as a whole and

27 can track such process as succession, recovery and the deviation of a system due to an anthropogenic

28 input. Their major disadvantage, which is also a disadvantage with most conventional multivariate

29 statistical techniques, is that all of the data are incorporated without regard to the metric (unit of

30 measurement) or relative value of a variable toward identifying patterns in the data set ("noisy" or random

31 data are included along with the rest). It can be difficult to reconcile variables such as pH with a 0-14

32 metric to the numbers of bacterial cells per mL, where low numbers are in the 106 range. Along the same

33 lines, data that vary randomly and have large metrics may overwhelm the statistical computations and

34 mask the importance of highly correlated variables with small metrics.

35 Ideally, multivariate statistical tests used for evaluating complex data sets, whether the goal is

36 to develop an ecological risk assessment or not, will have the following characteristics:



1
2 a) It will not combine counts from dissimilar taxa by means of sums of squares, or other ad hoc
3 mathematical techniques, as in the Euclidean and cosine distance measures;
4
5 b) It will not require transformations of the data, such as normalizing the variance;
6
7 c) It will work without modification on incomplete data sets;
8
9 d) It will work without further assumptions on different data types (e.g., species counts cr

10 presence/absence data);
11
1 2 e) The Significance of a taxon to the analysis will not be dependent on the absolute size importance with
13 common taxa, and taxa with a large, random variance will not automatically be selected to the exclusion of others.
14
15 f) It will provide an integral measure of "how good" the clustering is, i.e. whether the data set differs
16 from a random collection of points: and
17
18 g) It will, if appropriate, identify a subset of the taxa that serve as reliat-'P indicators of the physical
19 environment.

20

21 Although we have now defined the ideal characteristics of a multivariate system, none is of course

22 perfect. However, a method borrowed from the Artificial Intelligence (Al) tradition meets a large

23 proportion of the above design criteria.

24

25 Nonmetrlc Clustering and Association Analysis

26 Unlike the more conventional multivariate statistics, nonmetric clustering is an outgrowth of artificial

27 intelligence and a tradition of conceptual clustering. In this approach, an accurate description of the data

28 is only part of the goal of the statistical analysis technique. Equally important is the intuitive clarity of the

29 resulting statistics. For example, a linear discriminant function to distinguish between groups might be a

30 complex function of dozens of variables, combined with delicately balanced factors. While the accuracy

31 of the discriminant may be quite good, use of the discriminant for evaluation purposes is limited because

32 humans cannot perceive hyperplanes in highly dimensional space. By contrast, conceptual clustering

33 attempts to distinguish groups using as few variables as possible, and by making simple use of each one.

34 Rather than combining variables in a linear function, for example, conjunctions of elementary 'yes-no"

35 questions could be combined: species A greater than 5, species B less than 2, and species C between

36 10 and 20. Numerous examples throughout the artificial intelligence literature have proven that this type

37 of conceptual statistical analysis of the data provides much more useful insig,4t into the patterns in the

38 data, and is often more accurate and robust. Delicate linear discriminants, and other traditional

39 techniques, chronically suffer from overfitting, pi."rticularly in highly dimensioned spaces. Conceptual

40 statistical analysis attempts to fit the data, but not at the expense of a simple, intuitive result.

41
42
43
44
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1 Applications of Nonmetric Clustering and Association Analysis

2 A detailed description of our multivariate methods, including nonmetric clustering and association

3 analysis is in Appendix A. As examples of the usefulness of multivariate methods in general, and

4 nonmetric clustering in particular, we will use examples of field evaluations r"nd toAicity tests conducted

5 over the last 3 years. Insights into the utility of these methods, the dynamics of even straightforward

6 microcosm systems, and the importance of measurement variables have been the results of these

7 studies.

8

9 Field Studies

10 Before we can determine whether a toxin has affectci a group of organisms.or the dynamics of an

11 ecological community, we must first determine what types of changes would occur that are independent of

12 the toxin. In field situations, this is usually attempted by using a reference site, monitoring the changes

13 that occur at that site, and comparing this with the changes that occur in organisms at the "treatment" site.

14 However, one of the most difficult analytical challenges in ecology is to identity patterns of change in

15 large ecological data sets. Often these data are not linear, they rarely conform to parametric

16 assumptions, they have incommensurable units (e.g., length, concentration, frequency, etc.), and they are

17 incomplete (due to both sample loss and sampling design whereby different parameters are collected at

18 different frequencies). These difficulties exist regardless of whether there are toxins present; the only

19 difference is that with the presence of a toxin, we must try to separate the response to the toxin from the

20 other changes that occur at the site(s).

21 We have compared several types of multivariate techniques to evaluate two types of ecological data,

22 a limnological data set that included spatial and temporal changes in water chemistry and phytoplankton

23 populations, and a stream data set that included spatial (longitudinal) and temporal changes in benthic

24 macroinvertebrate species assemblages (17,18). Our objective was to see whether the multivariate tests

25 could identify obvious patterns involving the influences of stratification in the lake and the effects of

26 substrate and water quality changes on stream macroinvertebrates. We used principal components

27 analysis, hierarchical clustering (k-means with squared Euclidean or cosine of vectors distance

28 measures), correspondence analysis, and nonmetric clustering to look for patterns in the data.

29 In both studies, nonmetric clustering outperformed the metric tests, although both principal

30 components analysis and correspondence analysis yielded some additional insight on large-scaled

31 patterns that was not provided by the nonmetric clustering results. However, nonmetric clustering

32 provided information without the use of inappropriate assumptions, data transformations, or other data set

33 manipulations that usually accompany the use of multivariate metric statistics. The success of these

34 studies and techniques lead to the detailed examiniation of community dynamics in a series of two

35 multispecies toxicity tests.

36
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1 Multispecies Toxicity Testing

2 The multivariate methods described above have recently been used to examine a series of

3 multispecies toxicity tests. Described below are the data analyses from two recently published tests using

4 methodology derived from the Standardized Aquatic Microcosm (SAM) (ASTM E1366-91 ). The 64-day

5 SAM-protocol previously has been described (19,20,21,22,23). Briefly, the microcosms were prepared

6 by the introduction of ten algal, four invertebrate, and one bacterial species into 3L of sterile defined

7 medium.

8 In the first example (24), the riot control material 1,4-dibenz oxazepine (CR) was degraded using the

9 patented organism Alcaligenes denitrificans denitrificans CR-1 (A. denitrificans CR-1). A. denitnficans

10 CR-1 was obtained using a natural inoculum set in an environment containing the microcosm medium

11 T82MV containing the toxicant CR. After demonstrating the organisms ability to degrade the toxicant CR,

12 a microcosm experiment was set up to investigate the ability of the microorganisms to degrade CR in an

13 environment resembling a typical freshwater environment. Toxicity tests of the riot control materal

14 demonstrated that although A. denitrificans CR-1 eliminated the toxicity of a CR solution towards algae,

15 toxicity did remain to Daphnia magna.

16 The SAM experiment was set up with a control group without the toxicant or A. denitrificans CR-1, a

17 second group with only CR, a third group with only A. denitrificans CR-1, and the fourth group containing

18 both the toxicant CR and the bacterium A. denitnificans CR-1. Conventional analysis demonstrated that

19 the major impact was the increase in algal populations since both CR and the degradative products of the

20 toxicant both inhibited the growth of the major herbivore, 0. magna. The control group and the

21 microcosms inoculated initially with A. denitnfficans CR-1 were not distinguishable using conventional

22 analysis.

23 As a first test of the use of multivariate analysis in the interpretation of multispecies toxicity tests, the

24 data set used to analyze the CR microcosm experiment were presented in a blind fashion for analysis.

25 Neither the purpose of the experiment or the experimental set up was provided for the analysis.

26 Nonmetric clustering was used to rank variables in terms of contribution and to set clusters. Surprisingly,

27 the analysis resulted in only two clusters being recognized, Control and A. denitrificans CR-i treatments,

28 and the CR and CR plus A. denitrificans CR-I treatments. Variables important in assigning clusters were

29 0. magna, Ankistrodesmus, Scenedesmus and N02. Obviously, the inclusion of the principal algal

30 species in these experiments and the daphnia was not a surprise, but N02 had not been demonstrated as

31 a significant factor in previous analysis. However, the species A. denitfificans denitrificans is classified for

32 its denitrification ability (25).

33 The second major application of nonmetric clustering to the analysis of SAM data has been the

34 investigation of the impact of the water soluble traction (WSF) of the fuel Jet-A (26). Four treatment

35 groups, control, 1, 5 and 15 percent WSF were used.
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1 All of the multivariate tests (cosine distance, vector distance and nonmetric clustering) agree that a

2 significant difference between treatment groups was observed through day 25. From day 28 to day 39,

3 the effect diminished until there were no significant effects observable. However, significant effects were

4 again observable from day 46 through day 56, after which they again disappeared for days 60 and 63.

5 In Figure 2, the average cosine distances within the control group and between the control group and

6 each of the three treatment groups are plotted on a log scale. The initial, strong effect, from day 11 to day

7 25, is easily seen as a large distance -om the treatment 1 (control) and treatment 2, together, to both

8 treatment groups 3 and 4, initially, but then treatment 3 moves closer to the control. The period of no

9 significant difference, from day 35 to day 46, is also clear. During the second period of significant

10 difference, from day 49 to 59, a perfect dose-response for all three treatments is seen, with higher doses

11 becoming more distant from the control. This dose-response relationship is consistently maintained over a

12 period of eleven days, for four sampling dates, days 49, 53, 56, and 59. In general, a dose-response

1 3 relationship like this was not observed earlier, although the magnitude of the distance was considerably

14 greater.

15 Also of interest are the variables that best described the clusters and the stability of the importance of

16 the variables during the course of the experiment. Table I lists the variables determined to be important

17 in determining the clusters by importance for each sampling day as determined by nonmetric clustering.

18 In general, the number of variables that were important was larger during the start of the test and lower at

19 the end. In addition, a great deal of variability in rankings is apparent during the course of the SAM. The

20 number of sampling dates when a variable was deemed important in cluster formation is listed in Table 2.

21 Ankistrodesmus was the most consistent of the variables, being ranked in 12 out of the 16 sampling

22 dates. Medium daphnia was also ranked often. However, variables like Ostracod and Philodina did not

23 become important until later in the experiment.

24 The repeated oscillation of the dosed replicates compared to the controls were accounted for in two

25 basic ways:

26 a reflection of the functioning of the community best described by parameters not directly sampled

27 by the SAM protocol; or,

28

29 a repeated fluctuation in community structure initiated by the initial stress and that is visible as an

30 undampened movement in the systems.

31

32 Until more data can be obtained, the cause-effect of the second oscillation can not be determined.

33 However, the use of multivariate analysis detected an unexpected result, one providing a new insight into

34 the dynamics of even the relatively simple laboratory microcosm.
35
36
37
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1 SynthesIs

2 Several other researchers have attempted to employ multivariate methods to the description of

3 ecosystems and the impacts of chemical stressors. Perhaps the best developed approaches have been

4 those of K. Kersting and A.R. Johnson.

5

6 Multivariate Descriptions of Microcosm Systems

"7 Normalized Ecosystem Strain (NES) was developed by Kersting (11,13) as a means of describing the

8 impacts of several materials to the three compartment microecosystems containing an autotrophic,

9 herbivore and decomposer subsystems. These variables in the unperturbed control systems are used to

10 calculate the normal operating range (NOR) of the microecosystem. The NOR is the 95 per cent

11 confidence ellipsoid of the unperturbed state of a system. The center of the NOR is defined as the

12 reference point for the calculation of the NES. The NES is calculated as the quotient of the Euclidean

13 distance from a state to the reference state divided by the distance from the reference state to the 95

14 percent confidence (also called tolerance) c!'*.psoid, along the vector that connects the reference state to

15 the newly defined state. A value of 1 or less indicates that the new state is within the 95 percent

16 confidence ellipsoid, values greater than 1 indicate that the system is outside this confidence region.

17 Originally limited to ellipsoids, the use of Mahalonobis distances allows the use of more variables as

18 the confidence ellipsoid can be transformed to a confidence or tolerance hypersphere. These ideas were

19 examined using the microecosylem test method developed by Kersting for the examination of

20 multispecies systems. In tests using a relatively straightforward multicompartment microcosm the

21 sensitivity and strengths of this methods were observed. The sensitivity of the NES increased sensitivity

22 as the number of variables used to describe the system increased (13). Another interesting observation

23 was the increasing distance from the normal space of the system after a perturbation as measured by

24 NES as time increased. This increasing distance indicates that the perturbed system is drifting from its

25 original state. Kersting hypothesized that the system may even shift to a different equilibrium state or

26 domain and that the system would remain there even after the release of the stressor.

27 Apparently as an independent development, A.R. Johnson (15) proposed the idea of using a

28 multivariate approach to the analysis of multispecies toxicity tests. This state space analysis is based

29 upon the common representation of complex and dynamic systems as an n-dimensional vector. In other

30 words, the system is described at a specific moment in time as a representation of the values of the

31 measurement variables in an n-dimensional space. A vector can be assigned to describe the motion of

32 the system through this n-dimensional space to represent successional changes, evolutionary events, or

33 anthropogenic stressors. The direction and position information form the trajectory of the state space and

34 this can be plotted over time.

35 In the n-dimensional hypervolume that describes the placement and trajectory of the ecosystem it is

36 possible to compare the positions of systems at a specified time. This displacement can be measured by
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1 literally computing the distance from the systems and this displacement vector can be regarded as the

2 displacement of these systems in space. This displacement vectors can be easily calculated and

3 compared. Using the data generated by Giddings (27) in a series of classic experiments comparing

4 results of the impacts of synthetic oil on aquarium and small pond multispecies systems, Johnson was

5 able to plot dose response curves using the mean separation of the replicate systems. These plots are

6 very reminiscent of dose-response curves from typical acute and chronic toxicity tests.

7 As summarized by Johnson, the strengths of this methodology are the objectivity for quantifying the

8 behavior of the stressed ecosystem and the power of this methodology to summarize large amounts of

9 data. As with the work of Kersting, this methodology allows the investigator to examine the stability of the

10 ecosystem and the eventual fate of the system relative to the control treatment.

11 Another important application proposed by Johnson (16) was the use of multivariate analysis to

12 ideptify diagnostic variables that can be applied in the monitoring of ecosystems. Diagnostic variables, if

1 3 reliable in differentiating anthropogenically stressed systems from control systems would be extremely

14 valuable in monitoring for compliance and in determining clean up standards. The use of such variables

15 is justified due to the tact that decisions often have to be made with incomplete datasets due to technical

16 difficulties, cost, and a general lack of knowledge. Techniques proposed for the determination of these

17 variables included linear regression, discriminant analysis and visual inspection of graphed data.

18 Johnson conducted a cost-benefit analysis using an ecosystem model that demonstrated under the

19 condition of that model, the benefits of diagnostic variables. In the Discussion, Johnson proposes

20 simulation modeling to attempt to find generalized diagnostic variables that best describe the state space

21 and trajectory of an ecosystem.

22 The major difficulty with the methods detailed above is the reliance on conventional metric statistics.

23 Vector distances in an n-dimensional space including such disparate variables as pH, cells counts and

24 nutrient concentrations are difficult to compare from one experiment to another. Another consideration is

25 the fact that many of the variables may be compilations of others. Algal biomass is often calculated by

26 using multiplying cell counts by an appropriate constant for each species. Species diversity and many

27 indices of ecosystem health are similarly composited variables. As discussed in the pervious sections,

28 the use of metric methods with nonmetric clustering may prove a useful combination.

29

30 Search for Relevant Assessment and Measurement Endpoints

31 The attempt by Johnson to derive diagnostic variables is an interesting approach. However, our

32 current research indicates that identity of the variables that contribute the most to separating control

33 treatment from dosed treatment groups change from sampling period to sampling period. The variables

34 change in the SAM experiments, no doubt, in response to the successional trajectory of the system as

35 nutrients become depleted. As nutrients become limiting and the ability of the system to exhibit large
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1 differences in community structure become less, the metric measures do not exhibit the same magnitudes

2 of separation. Nonmetric clustering does not seem to be as sensitive to these changes.

3 However, the search for diagnostic measures to indicate the displacement of an ecosystem may not

4 be fruitless. Although the relative importance of the variables in the SAM experiments may change, there

5 are often variables that are more critical during the earlier stages of the development of the microcosm

6 and those that are more crucial in the latter stages. The variable Ostracods is generally more important in

7 the latter half of the experimental series than in the latter stages. The crucial aspect is that the clustering

8 algorithm is able to select ecosystem attributes that are the best in differentiating stressed versus non-

9 stressed systems. Although expert judgment may be able to predict in some cases variables that could

10 be considered important to measure, the clustering approach is rapid, consistent, and not biased.

11 Instead of defining Assessment Endpoints, it may be more practical to define an Assessment

12 Baseline or hypervolume using variables that have been demonstrated to be important in past

13 descriptions of these types of ecosystems. Defining the 95 percent confidence region may be a more

14 accurate way of characterizing the problem than by using artificial constructs or individual assessment

15 measurement endpoint combinations. Assignment of these confidence regions may also improve the

16 quality and accuracy of environmental risk assessment. Another logical outcome is that these regions

17 must be defined by the measurement endpoints (variables). Measurement endpoints are the means by

18 which a system can be accurately placed and its trajectory defined in an n-dimensional coordinate

19 system. Such a means of describing systems has already been proposed by Kersting. The confidence

20 region used to calculate NES is static, but an accounting of the passage of such a system through the

21 coordinate system should provide a region from which deviation can be measured. Comparing dosed

22 treatment groups to a control group is essentially the corresponding exercise but using a control series of

23 replicates instead of an a priori prediction to measure deviation from the Assessment Baseline

"24 hypervolumes.

"25 Measurement endpoints are therefore operationally defined, in the context of this paper using a

"26 multivariate approach, as the variables the set the axes for the description of the system within the n-

27 dimensional space. Data such as dose-response curves may play a part if they describe a relevant axes

28 when used in a biomonitoring role. Dose response data, however, are not measurement endpoints by

29 themselves, but are important in setting relevant system parameters. It is preferable to select

30 measurement endpoints that are the lowest common denominator of the system that is capable of being

31 measured. For example, pH is certainly the most direct measurement of hydrogen ion concentration

32 available. Diversity and other indices of species number and community structure, however, are

33 composites of species abundance data.

34

35

36
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1 The Myth of Ecosystem Health and Measurement Indices

2 The use of indices such as diversity and the Index of Biological Integrity have the effect of collapsing

3 the dimensions of the hypervolume in a relatively arbitrary fashion. Indices, since they are composited

4 variables, are not true endpoints. The collapse of the dimensions that are composited to tends to

5 eliminate crucial information, such as the variability and distribution of the organisms within a particular

6 system. The mere presence of absence and the frequency of these events can be analyzed using

7 techniques such as nonmetric clustering and preserves the nature of the dataset. A useful function was

8 certainly served by the application of these methods, but the new methods of data analysis and

9 compilation should serve to replace these approaches and preserve the underlying structure and dynamic

10 nature of ecological systems.

11 Part of the attraction of using indices may result in the pervasive nature of the metaphor, ecosystem

12 health. In a recent critical evaluation, Suter (2) dismissed ecosystem health as a misrepresentation of

13 ecological science. Ecosystems are not organisms with the patterns of homeostasis determined by a

14 central genetic core. Since ecosystems are not organismal in nature, health is a property that can not

15 describe the state of such a system. The urge to represent such a state as health has lead to the
0

16 compilation of variables with different metrics, characteristics and casual relationships. Suter suggests a

17 better alternative would be to evaluate ihe array of ecosystem processes of interest, a process that is now

18 possible given multivariate methods.

19

20 Future Developments

21 Modeling of ecosystems may play an even more important role as the ability to generate the

22 Assessment Baseline hypervolumes increases. However, the critical aspect is that these models not only

23 predict the outcomes of the species under protection or the fishery that must be preserved but also the

24 values of the measurements that can be made in a field or laboratory situation. These predictions should

25 also predict sampling variability and chaotic and stochastic variation. The development of guch models

26 would be a critical development in the formulation of risk assessment methodologies.

27 Development of such models should be made with the understanding that the probability of

28 divergence from the control state or the Assessment Baseline hypervolume given enough time will be
29 1.00. Assessment goals should be defined with reasonable time periods.

30 A major difficulty in the exploitation of these methods is that the vector distances, and to some extent

31 even the cosine distances are not transferable or comparable unless the variables measured are

32 essentially the same with the same metrics. Systems with different descriptive parameters will by

33 definition occupy a different volume of n-dimensional space, making comparisons difficult. Determining

34 the relevant parameters to use a measurement endpoints a priori may be difficult it not impossible.

35 There are benefits that should evolve directly from the use of multivariate techniques. First, it should

36 force the description of measurement and assessment endpoints in terms of acceptable variance in a
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1 dynamic fashion with expected distributions or functionality. Probabilistic criteria will certainly evolve from

these aspects.

3 As these criteria are developed, the recognition that ecosystems are unique in their basic nature and

4 not amenable to descriptions that incorporate only one dimensionally with that dimension an arbitrary

5 axis.

6 Finally, the use of multivariate techniques should enable the researcher and assessor the capability of

7 using all of the data in the description of an ecosystem with the results presentable to a decision maker or

8 risk manager. After all, it has proven feasible to portray the results of these analysis in terms of distance

9 and probabilities.

10
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1 Appendix A. Multivarlate Techniques

2 In the research described below, three multivariate significance tests were used. Two of them were

3 based on the ratio of multivariate metric distances within treatment groups vs. between treatment groups.

4 One of these is calculated using Euclidean distance and the other with cosine of vectors distance (28,29)

5 (Figure 3). The third test used nonmetric clustering and association analysis (30). In the microcosm tests

6 there were four treatment groups with six replicates, giving a total of 24. This example is used to illustrate

7 the applications in the derivations that follow.

8 Treating a sample on a given day as a vector of values, i =/xi.... x17), with one value for each of

9 the measured biotic parameters, allows multivariate distance functions to be computed.

10 Euclidean distance between two sample points i and ý is computed as

11

12 x -y0)

13

14 The cosine of the vector distance between the points i and ý is computed as

15

16 1 - xy

17

18 Subtracting the cosine from one yields a distance measure, rather than a similarity measure, with the

19 measure increasing as the points get farther from each other.

20 The within-between ratio test used a complete matrix of point-to-point distance (either Euclidean or

21 cosine) values. For each sampling date, one sample point i was obtained from each of six replicates in

22 the four treatment groups, giving a 24 x 24 matrix of distances. After the distances were computed, the

23 ratio of the average within group metric (V4 to the average between group metric (B) was computed

24 (WIB). If the points in a given treatment group are closer to each other, on average, than they are to

25 points in a different treatment group, then this ratio will be small. The significance of the ratio is estimated

26 with an approximate randomization test (31). This test is based on the fact that, under the null hypothesis,

27 assignment of points to treatment groups is random, the treatment having no effect. The test, accordingly,

28 randomly assigns each of the replicate points to groups, and recomputes the W1B ratio, a large number

29 of times (500 in our tests). If the null hypothesis is false, this randomly derived ratio will (probably) be

30 larger than the WIB ratio obtained from the actual treatment groups. By taking a large number of random

31 reassignments, a valid estimate of the probability under the null hypothesis is obtained as (n+1)/(500+1),

32 where n is the number of times a ratio less than or equal to the actual ratio was obtained (31).

33 In the clustering association test, the data are first clustered independently of the treatment group,

34 using nonmetric clustering and the computer program RIFFLE (32). Because the RIFFLE analysis is naive
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1 to treatment group, the clusters may, or may not correspond to treatment effects. To evaluate whether the

2 clusters were related to treatment groups, whenever the clustering procedure produced four clusters for

3 the sample points, the association between clusters and treatment groups was measured in a 4 x 4

4 contingency table, each point in treatment group i and cluster j being counted as a point in frequency cell

5 ij. Significance of the association in the table was then measured with Pearson's X2 test, defined as

6

Z2 = 2 A(N, - n,,)

7 *1 n..

8

9 where Niiis the actual cell count and nij is the expected cell frequency, obtained from the row and column

10 marginal totals N+j and Ni+ as

I1

ni, = NJj

12 N

13

14 where N = 24 is the total cell count (33), and a standard procedure for computing the significance

15 (probability) of X taken from (34).
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1 Tables

2

3
4 Table 1. Important Variables Rznked By Nonmetric Clustering For Each Sampling Date For The Jet-A
5 SAM Toxicity Test. Some variables such as Ankistrodesmus were consistently important in determining
6 group clusters throughout the experiment. Some of the variables such as Ostracod and E Ilodi were
7 more important in the latter stages of the experiment. The order of importance of the variables often
8 changed from day to day, with no one variable being common to each sampling date. The variables used
9 as part of the overall analysis were: Anabaena, Ankistrodesmus, Chlamydomonas, Chiorella. Daphnia

10 (Ephipia, Small Daphnia, Medium Daphnia, Large Daphnia), Hypotricha, Lyngbya, Miscellaneous sp.,
I1I Ostracod (Cyprinotus), Philodina (Rotifer), Scenedesmus, Selenastrum, Stigeoclonium. and Ulothnix.

12

13 Day Important Variables in Determining Clusters in Rank Order

14 11 M. Daphnia, Chlorella, Chlamydamonas, Ulothrix, S. Daphnia,Selanastrum,Scenedesmus

15 14 S. Daphnia, M. Daphnia-Selenastruml, Chlamydamonas, Chlorella, L. Daphni3, Ankistrodesmus

16 18 Ankistrodesmus, S. Daphnia, Chlorella, Chiamydamonas, Selanstrum, L. Daphnia

17 21 Ankisfrodesmuis, S. Daphnia, L. Daphnia-M. Daphnia, Scenedesmus
18 25 Scenedesmus, S. D;;phnia, L. Daphnia, Chiorella, Philodina-M. Daph~nia

19 28 Ankistrodesmus, L. Daphnia, Scenedesmus
20 32 S. Daphnia, M. Daphnia, Ankistrodesmus, Chloreil?

21 35 Ankistrodesmus

22 39 M. Daphnia-Selenastrum, Ostracod-Ankistrodesmus

23 42 M. Daphnia, Ostracod, Scenedesmus
24 46 Scenedesmus, Ankistrodesmus. S. Daphnia. M. Daphnia

25 49 Chlorella, PfhIioin, Ankistrodesmus, Lyngbya

26 53 Ankistrodesmus, Ostracod, Chlorella

27 56 M. Daphnia-Scenedesmus, Ankistrodesmus, Lyngbya
28 60 Lyngbya, M. Daphnia, PhlodQina, Chlorella

29 63 Chlorella, Ankistrodesmus, Philodina. Ostracod

30

31 1 Hyphen between variables denotes equal rank

32
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1 Table 2. Variable According to Success in Determining Clusters as Defined by Nonmetric Clustering in

2 the Jet-A SAM Experiments. Variables such as Ankistrodesmus and the Daphnia classes were important

3 in the course of this study. Reliance on even these two variables would have been misleading in the

4 determination of the second oscillation.
5

6 Variable Ranked

7 Ankistrodesmus 12

8 M. Daphnia 11

9 Chlorella 9

10 Scenedesmus 7

11 S. Daphnia 6

12 L. Daphnia 5

13 Ostracod 4

14 Philodina 4

15 Selenastrum 4

16 Lyngbya 3

17 Ulothrix I
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1 Figures

2

3
4 Figure 1. Schematic of the Framework for Ecological Risk Assessment (3). Especially important in the

5 interaction between exposure and hazard and the inclusion of a data acquisition, verification and

6 monitoring component. Muhtivariate analyses will have a major impact upon the selection or assessment
7 and measurement endpoints as well as playing a major role in the data acquisition, verification and

8 monitoring phase.

9
10 Figure 2. Multivariate analysis o1 the impact of Jet-A in the SAM test system. Figure 2A shows the

11 Cosine distance from the control group to each of the treatments for each sampling day. Note that large
12 differences are apparent early in the SAM. During the middle part of the 63 day experiment the distances

13 between the replicates of Treatment 1, the control group, is as large as the distances to the treatment

14 groups. However, later in the experiment the distances from the dosed microcosms to the control again
15 increase. Significance levels of the three multivariate statistical tests for each sampling day are presented
16 in Figure 2B. Note that there are two periods, early and late ones, where the clustering into treatment
17 groups is significant at the 95 percent confidence level or above.

18
19 Figure 3. Measures of distance between clusters. Two of the commonly used measures of separation of

20 clusters in a n-dimensional space are the cosine of the angle and the vector distance. Each method has

21 advantages and disadvantages. In order to visualize the data as accurately as possible several measures

22 should be employed.

23
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Abstract

Risk assessment typically proceeds by successively combining various un-

certain inferences into an overall probability. For example, in computing the

potential effect on a target species, an extrapolation may have to be made from

an acute test on a similar species. A test on white mice, for example, may be

pressed into service to estimate effects on deer mice. The expected exposure

may be chronic rather than acute, and this will introduce further uncertainty.

The test may have been an LC 50 test, while the criteria standards may involve

NOELs, which again have to be uncertainly estimated from the LC 50. Typ-

ically these uncertainties are combined into a single inferential step, often by

assuming worst case in each step, and independence of each uncertainty. This

procedure results in a conservative estimate. but rarely an accurate one. Fur-

ther, it can create an unwarranted .ariance of several orders of magnitude from

the actual test results. This type of inference procedure constitutes a proba-

bilistic reasoning system. for which a number of mathematical formalisms have

been developed in the artificial intelligence tradition, such as Dempster-Shafer

theory, truth maintenance systems, and nonmonotonic logic. In this paper, we

use several cases to illustrate the differences between the conventional approach

and a more sophisticated approach that takes into account possible interactions

between the v-arious uncertainties in the system. It is generally possible to get

much more realistic bounds on the risk assessment by invoking mathematical

methods more sensitive to the logic of combined probabilities.

Keywords: uncertainty, risk assessment. probability. artificial intelligence, ex-

pert systems



Uncertainty Propagation in Risk Assessment

Life is the art of drawing sufficient conclusions from insufficient

premises. -Samuel Butler

1 Introduction

Risk assessment involves the combination of a wide variety of more or less uncertain

sources of information. Some are known very accurately, such as the gravitational

constant or the balances required in redox equations, others are known approxi-

mately, such as the LC 50 of copper sulfate for rodents, while others are largely

informed conjecture, such as the strength of a public reaction to a 10% increase

in the acidity of rain or the stability of an ecosystem. Usually, each of these un-

certainties is modelled by a probability distribution over the possible values that

each of the variables or parameters of interest can obtain. We discuss here sev-

eral approaches to uncertain reasoning that come out of the artificial intelligence

(AI) tradition, and how use of these techniques might improve the practice of risk

assessment.

The variables that go into a risk assessment can be grouped into three major

categories:

1. Physical parameters.

2. Decisions.

3. Values.

Physical parameters are things like temperature, pH, number of organisms, and so

on. In purely scientific studies, as opposed to policy making studies, physical pa-
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rameters are often the only variables that go into the analysis. Decision parameters

are items that are under the user's control. The decision to grant permits, for ex-

ample, can take on such values as: no permits, a few restricted permits, or permits

granted to all who apply. The values of the physical variables often feed into the

decisions, but generally decisions are made in the hope of maximizing the value

parameters. Value parameters are things like jobs, clean air, and healthy wildlife

populations.

Establishing reasonable values for these uncertain quantities is a difficult enough

task. However. even after the experiments or surveys have been done, the problem

remains of combining various uncertain quantities, of reasoning from one unsure

foundation to another. For example, one may have reasonably accurate informa-

tion about the relation of a toxin to a particular species, and reasonably accurate

information about the structure of the toxin and its toxic relationship to various

metabolic pathways, but need to extrapolate this evidence to other species, to an

entire ecosystem. or to other toxins. Methodologies such as the QSAR, for exam-

ple, are attempts to extrapolate from tested species to untested species, e.g. rats to

Daphnia. or from tested compounds to untested compounds, e.g. 2.4 dichlorophenol

to 2.6 dichlorophenol (Enslein and Craig, 1978: Enslein et al., 1983; Enslein et al..

1988).

Typically, it is assumed that the uncertainties in an analysis are probabilities

of one sort or another, and that, accordingly, the only appropriate models for com-

bining them are the laws of probability. However, anylyzing a set of variables (in-

cluding, perhaps, physical parameters, decisions, and values) with a mathematical,

probabilistic model leads quickly to four major problems:
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1. A combinatorial explosion of possibilities.

2. A lack of semantic information to guide inferences.

3. Poor methods of dealing with ignorance as well as uncertainty.

4. The need to calculate all values in the model at once, rather than incrementally

as evidence is obtained.

Recent Al research has directly addressed these problems. In this paper we briefly

consider some of the merits and problems of three Al approaches: localized ap-

proaches (which attempt to solve the combinatorial explosion problem), causal

nets (which attempt to solve the semantic problem), and Dempster-Shafer calculus

(which attempts to solve the ignorance problem). All of them have the benefit of

being incremental approaches; as each new piece of information is added to the

model. the model incorporates it without large-scale recomputation of all that has

gone before.

After a brief introduction to the underlying probabilistic model of uncertainty

analysis. we will discuss each of the three Al approaches in turn.

2 Mathematical model

The underlying probabilistic model is well understood in the risk assessment lit-

erature (Morgan and Henrion, 1990). If a problem concerns a set of variables,

for example {A. B. C, D, E}, then. for each value that each variable can take on,

we need to know the joint probability of that combination, P(a, b, c, d, e) (where

a is a value A can take on, etc.). The immediate problem with this approach is
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that it is intractable for even small numbers of variables. If there are, say. only

20 variables in a problem, and each can take on, say, 6 values, then there are

620 - 3.656,158.440,062.976, over 3 quadrillion, different combinations of these

values. Specifying all of these values is plainly unrealistic, but which values are

necessary, and which redundant?

If the variables are continuous numbers and can, i" effect, take on a infinite num-

ber of different values, then the joint probabilities must be specified as continuous

multivariate functions of those variables, an even more daunting task. Generally

speaking, most practical risk assessment proceeds by making all variables discrete:

for example, species may be considered "highly susceptible," "moderately suscepti-

ble," or "not susceptible." To keep things simple, we will also, for the most part,

assume that variables are categorical, that is, there are only a small number of dis-

crete values they can take on. However, many of the techniques discussed can be

generalized to the continuous case.

Characteristically, probabilities are not computed from a full, joint probability

distribution, but are dealt with in a probability tree, such as the one in Figure

1. In this figure we have only four variables, and each variable (A, B. C, and Figure

D) has two possible values, which we will represent as +a, -a. etc., and indicate here.

by the upper and lower branches. There are. accordingly, 2' = 16 possibilities,

one for each path through the tree from left to right: the ends of the far-right

arrows each represent a different possible outcome. The heavy arrows, for example.

represent the combination (+a. -b. -c, +d). The numbers on the arrows represent

conditional probabilities, based on all the choices to the left. For instance, the

heavy arrow above C in the figure has the value 0.8, indicating that the conditional
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probability of -c given +a and -b, is 0.8, written P(-cl+a.,-b) = 0.8. If all 24

probabilities are known in advance (one number attached to each of the ends of the

far-right arrows), then these conditional probabilities can be calculated by summing

and dividing from right to left. The values at the top right, for example, indicating

that P(+a, +b. +c. +d) = 0.01 and P(+a, +b, +c, -d) = 0.004 together imply that

P(+dI+a, +b. +c) = 0.01/(0.01 + 0.004), and so on. Likewise, knowing all of the

conditional probabilities will determine the joint probabilities. The heavy arrows,

for example. tell us that P(+a, -b. -c. +d) = (0.3)(0.2)(0.8)(0.1) = 0.0048.

It is usually much easier for humans to estimate a conditional probability than

to estimate a joint probability. For instance, the probability that it rained last

night. given that the grass is wet and you heard thunder. could be estimated. But

estimating the probability that you will hear thunder tonight and find wet grass

in the morning. unconditioned by anything. usually leads to confusion. Human

probabilistic judgements are usually conditional, and therefore probability trees

such as the one in Figure 1 are usually filled in along the branches, rather than

from the right side.

The tree can. of course, be rearranged, putting B before A. etc., and getting

a different set of conditional probabilities (Pý+aI - b) instead of P(-bj+a), for

instance)[ However. there are still an insuperably large number of conditional prob-

abilities that must be estimated, and the mathematical model itself gives us no help

ii determining which are relevant and which irrelevant. Further, if there are some

probabilities in the tree about which we are largely, or even completely, ignorant,

some values for them will have to be provided, even if they are completely arbitrary.

In situations of complete ignorance. a uniform probability distribution is usually as-
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sumed: all outcomes equally likely. Other situations require a "seat-of-the-pants"

estimate; for example, we may estimate that 75% of the local population is likely

to favor a pesticide regulation, using only the current political climate as guidance.

This is not total ignorance, but it is just as arbitrary.

These problems: huge numbers of possibilities, not knowing which of them are

relevant, treating ignorance in an ad hoc manner, and the basic need to recalculate

everything when any one thing changes, lead us into several models of reasoning

under uncertainty that stem from the AI tradition. We now turn to a consideration

of three of them. and their relative merits in dealing with these problems.

3 Local approaches

Early in the development of expert systems. the combinatorial problems associated

with inference under uncertainty were recognized. While it was recognized that.

if the presence of a was evidence for b (e.g. P(bla) was high), then even if we

know a is true we still cannot conclude anything about b without knowing if a is

the only information relevant to b. Another factor, such as c, might completely

alter our expectations. For example. elevated temperature in an aqtatic system F

generally connotes reduced dissolved oxygen concentrations because of the inverse b

relationship between oxygen solubility and temperature. However, the elevated

temperature may also imply that it is mid-summer. Photosynthetic activity during

this time may cause increased dissolved oxygen levels if the values come from the

epilimnion of a biologically productive lake (see Figure 2).

Because it was clearly unrealistic for every inference to consult every possibly
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relevant fact in the system. an approximate approach was used. which would go

ahead and make inferences from a to b. but would attach "certainty factors- to the

conclusions. Certainty factors are definitely not probabilities; calculating proba-

bilities was deemed too hard and certainty factors were a substitute. An example

from the MYCIN system follows (Buchanan and Shortliffe. 1984). MYCIN was an

early expert system constructed to perform medical diagnosis: examine symptoms.

recommend further tests, and make inferences as to likely causes.

Each inference rule in MYCIN was expressed as an -if-then" statement with a

certainty factor attached, such as these:

1. If a then c (0.4)

2. If b then c (O.G)

3. If c then d (0.8)

which indicated that, for example, if you were reasonably sure about c, then you

would be 80% as sure about d. Various combination rules had to be devised when

chains of reasoning were involved. For example. if a and b were both known for

certain, the first two rules could be combined under the following formula to get a

certainty factor for c:

CF(c) = 0.4 + 0.6 - (0.4)(0.6)

= 0.76

Given this certainty factor for c. the third rule above could be used to give a certainty

factor for d:

CF(d) = (0.76)(0.8)
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= 0.61

The MYCIN certainty factors take on both positive and negative values, allowing

evidence to be either for or against a conclusion.

Such localized rules essentially solved the combinatorial explosion problem by

ignoring it. Their use resulted in practical, working systems that solved large prob-

lems in the real world (Buchanan and Shortliffe, 1984). However, they had to be

used with great care, because, strictly speaking, their inferences were invalid. Con-

sider, for example. what would happen with these rules if different types of reasoning

are mixed. Some inferences are from cause to effect; for example. if you open the

floodgates, you can safely infer that the water downstream will rise. On the other

hand, some inferences are from effect to cause; for example, if you find a large fish

kill, you can legitimately raise your expectation of toxins in the water. But putting

two such inferences together can be disastrous. Consider:

"* If the sprinkler was on then the grass is wet (0.9)

"* If the grass is wet then it rained (0.8)

Therefore:

* If the sprinkler was on then it rained

(0.9 * 0.8 = 0.72)

Each of the two original inferences is quite probable: each of their "ir parts lends

support to their *then" parts. The combination of the two, however, is ludicrous.

One attempt to incorporate information such as cause-effect relationships into

the process of reasoning under uncertainty is provided by causal nets, considered in

the next section.
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4 Causal nets

Causal nets, also called Bayesian networks or influence diagrams, are an attempt

to retain the original probabilistic model, exemplified in Figure 1, but meet head-

on the problem of combinatorial explosion by analyzing the kinds of links in the

diagram, and reducing the number of calculations that have to be done without

sacrificing validity of the inferences (Pearl, 1988).

One of the devices brought to bear on this problem is distinguishing cause and

effect, as mentioned at the end of the last section. In Figure 3, the inferences from

"sprinkler" to "'grass" and from -grass" to 'rain" are distinguished by being in the

opposite causal direction. Inferences from cause to effect are carried by ir-messages, Figur

while inferences from effect to cause are carried by A-messages. (Since we nor- here.

mally have conditional probabilities of effects, given causes, 7r's are associated with

probabilities while A's are associated with likelihoods, hence the names.) Careful

handling of A and ir messages at each point avoids the nonsensical inference from

"sprinkler" to "rain", but does so in a way that does not require every inference to

check every other fact in the system before going ahead. In fact, only in certain,

restricted classes of systems does any non-local checking have to be done. Causal

"loops" are one example. where, for instance, a single cause can have two effects,

but each effect can result in the same symptom. In Figure 4, for instance, the ob-

servation of increased chlorophyll would naturally lead to an increased probability

of algal enhancement, which should strengthen the probability of both an oxygen

sag (by a 7r message) and the probability of some form of nutrient enhancement (by

a A message). However, the oxygen sag should not then send a A message up the Figi

here
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fish kill -- nutrient ladder, because this would increase the probability of nutrients

twice on the same piece of evidence.

Such loops raise problems for the causal net model, and there are a number

of approaches to dealing with them; but these problems are minor compared to a

straightforward mathematical model which would require all factors be reconsidered

in all inferences.

A number of other advantages to the causal net model come about as well.

The importance of qualitative uncertainties is obvious. The EPA Framework for

Ecological Assessment, for example, asserts that,

... often the relationship [between measurement and assessment end-

points] can be described only qualitatively. Because of the lack of stan-

dard methods for many of these analyses, professional judgment is an

essential component of the evaluation (U. S. Environmental Protection

Agency. 1992. p. 23)

However, a causal net model offers a standard, formal, and qualitative treatment

of independence. In the mathematical model, for example, independence of events

is defined quantitatively, based on the probability distributions: a is said to be

independent of b. given c, if and only if

P(alb.c) = P(ajc)

Clearly, to establish this in general, one has to go back to the joint probabilities and

calculate things numerically. Humans. however, can often judge whether two things

are independent, without having the slightest idea of the numeric probabilities in-

volved. Consider, for instance, a watershed study and the question of whether or
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not rainfall is independent of soil type. Normally we could easily judge that these

two factors are independent. However, to verify this mathematically, the joint prob-

abilities for each plot of land, for each amount of rain, and for each soil type, would

all have to be calculated or estimated. This is clearly a large task, and also plainly

a waste of time given that we can judge their independence qualitatively without

any of the numbers.

Causal nets, on the other hand. by distinguishing 7r (cause to effect) and A

(effect to cause) inferences, can give deep qualitative insight into this kind of inde-

pendence. For example, height and reading ability in humans are highly correlated.

However. if you know a subject's age (presumably the root cause of the correlation

between height and reading ability), then height and reading ability become inde-

pendent. On the other hand. earthquakes and burglaries are largely independent,

but both can cause your car-alarm to go off. Hearing your car alarm simultaneously

raises the probability of both a burglary and an earthquake, but also renders them

dependent -hearing about an earthquake on your radio will decrease your expec-

tation of a burglar at your car. Rainfall and soil type, for another example, are

only conditionally independent. If it is learned that a hill slope failure occurred,

then rainfall and soil type are no longer independent: a very stable soil Lype would

increase the probability of heavy rain before the failure. Causal nets, in conjunction

with algorithmic inference eugines, can automate such complex qualitative reason-

ing. The automation of such inferences becomes critical as the systems dealt with

become m,,re complicated, and dozens or hundreds of intertwined causes and effects

begin to interact.

An extension of the causal net model to continuous-valued numeric variables is
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straightforward (Pearl, 1988, pp. 344-356), and only requires that some tractable

model of the uncertainties be used. The usual assumptions about uncertainties, such

as uncorrelated, normal distributions, and linear interactions between variables,

suffice.

5 Dempster-Shafer theory

Causal nets are an improved reasoning tool for dealing with probabilities such as

those found in the standard model (Figure 1). However, even with the improvements

found in a causal net approach, at times the probabilities in the standard model

remain intractable. Dempster-Shafer theory was designed to overcome some of these

problems, by approaching probabilities in an entirely different light (Shafer, 1976;

Gordon and Shortliffe, 1984). To understand this approach, consider a standard

model with just two variables, a and b. In the standard model, probabilities must

be assigned to all possible outcomes. namely, (+a, +b), ( -a, -b), (-a, +b), and

(-a, -b). Even in a situation of total ignorance, some probabilities (such as 0.25

to each) would have to be assigned to these. In the Dempster-Shafer model, sets of

possible outcomes are considered. Probabilities are defined over these sets, denoting

the hypothesis. in each case. that one or another of the possible outcomes in the

set will be the true one. In our two variable example, for instance, the sets might

consist of such things as {(+a. +b), (-a, -b)}, denoting the hypothesis that either

both a and b will be the case, or neither will, or {(+a, -b), (-a, +b)}, denoting the

hypothesis that if either a or b happens, the other won't.

The logic of this approach thus contrasts with the standard model. Rather
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than making joint probabilities easier to deal with by breaking them down into

conditional probabilities, joint probabilities are simplified by lumping them together.

The intuition is that many working hypotheses in science are of this nature: a

disease symptom, for example, may indicate one of several diseases and eliminate

others. The presence of such a symptom, then. is evidence for an hypothesis that

is essentially a disjunction: it's probably either A or B or C, where each of the

hypotheses (A, B, and C) is itself a complete specification of the system.

This approach has the advantage of immediately simplifying most problems. In

dealing with a complex ecological system, for instance, a natural approach does

not usually involve hypotheses governing all possible states of all variables in all

combinations. Rather, a few models are conjectured that have consequences for all

of the variables. For example, a eutrophic lake would characteristically imply high

temperature, low dissolved oxygen. and a deep depth. An oligotrophic lake, on the

other hand. would imply high temperature. high dissolved oxygen, and either deep

or shallow depth. More finely divided scenarios would be devised, of course, to fit

the level of assessment desired.

Further, the calculation of probabilities over these sets is freed from some of the

problems that plague causal nets and other "Bayesian" approaches. The selection of

prior probabilities, for example. is eliminated. Rather than. say, assigning a uniform

probability to all possible outcomes in the case of complete ignorance, the Dempster-

Shafer theorist simply assigns probability one to the set of all possible outcomes (a

set usually denoted by e, and called the frame of discernment), and zero to any

subset. To make sure these probabilities of sets of hypotheses are not confused

with probabilities of hypotheses. we use m instead of P, and say m(E) = 1.0. In
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a Bayesian approach, by contrast, the initial state of ignorance might be modelled

using a uniform distribution: for example, if there were n possible outcomes. each

one would be assigned a probability of 1/n.

For a simple example of subsequent calculations and the incremental propagation

of uncertain information in the Dempster-Shafer model, consider a simple situation

in which there are only three possible outcomes, A, B, and C. All possible subsets

of these outcomes are illustrated in Figure 5 (except the empty set, which, by

assumption. will never have a probability greater than 0). The frame of discernment Fig

E = {A, B. C) is at the top. and the subset relation is indicated by an arrow. her

Initially,

m(E) = 1.0

m({A.B}) = r({A,C}) 0.0

(A Bayesian approach, on the other hand, would have P(A) = P(B) = P(C) =

1/3.) Now suppose that information is gained suggesting, at a level of 0.6. that

either B or C is correct. We update as:

mre() = 0.4

m({B.C}) = 0.6

m({A.B}) =m AC})=...=O.0

Notice that the remainder (0.4 = 1.0 - 0.6) is not assigned to {A}, the complement

of {B, C}, but remains with the completely neutral hypothesis set, {A, B, C). This

accords well with intuitions: evidence in favor of {B, C) should not increase the

probability of {A} from 0 to 0.4.
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Combining further evidence with this m function proceeds as follows. Let us

call the above function nil, and suppose we gain evidence in favor of {A. B}, with

strength 0.5. This would give us a new function, Mn2 , with

m2(E) = 0.5

m2 ({A.B}) = 0.5

m2({B.C}) = m 2 ({A.C}) =...0 0.

In this case. we would expect B to be supported at some level greater than zero,

since it was supported by both pieces of evidence. and this is the case. The combined

measure function. m3, obtained from ml and m.2, is defined as follows, for any set

Z:

m 3(Z)= E mn(X)•m 2 (Y)
.XnY=Z

Accordingly.

m3 ({B}) - rn({B,C}).m 2({A.B})

= (0.6)(0.5)

- 0.3

?n3({AB}) i,({A.B.C}).m 2 ({AB})

= (0.4)(0.5)

- 0.2

n13 ({B.C}) = ni({B.C)) m2({A.B.C})

= (0.6)(0.5)

- 0.3
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m3 ({A.BC}) = m 1 ({AB,C}).m 2({A.B.C})

= (0.4)(0.5)

= 0.2

and all other m 3 values are zero. Notice that the sum of all m3 values remains one,

as a probability distribution should. Occasionally, when evidence supports mutually

incompatable hypotheses. the sum drops below one. For example, if one experiment

supported A as the only explanation. and another experiment supported only B,

then the empty set, 0 = {A} fl {B}. representing "no possible explanation of the

evidence." would get some amount of support. In this case. Dempster-Shafer theory

specifies that the probabilities of the nonempty sets are simply scaled up so that

the total sum remains one. Thus, the full equation for m3, given mI and M2, is:

rn3(Z) = •'.Yr=zm1(X)'rn2)(Y)

1 - EZyn)=o mni(X)• -m'(Y)

This equation can be applied in an incremental fashion as each piece of information

is acquired, or each decision contemplated.

These calculations may appear confusing and involved, and their justification

involves deep results in model theory and logic (Shafer. 1976), but they are nonethe-

less intuitively satisfying and they can be fully automated. The important fact to

notice about them is that practitioners, in dealing with uncertain evidence, need

only specify which sets of hypotheses the evidence supports. The precise impact

of a piece of evidence on any one variable, physical parameter, decision, or value.

need not be estimated. Combinations of particular variables can be combined into

scenarios, and the probabilities of each scenario dealt with directly. This can result

in considerable conceptual clarity in dealing with complex situations. The usual
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requirements of expert solicitation, that he or she imagine wildly unlikely combi-

nations of events, and then estimate probabilities for other variables conditioned

on them, are absent from the Dempster-Shafer methodology. Only likely scenarios.

combinations of variable values, need be considered.

6 Conclusion

The logic of combined probabilities, studied extensively in the artificial intelligence

tradition, is amenable to a large number of approaches. The mathematical founda-

tions of probability are usually based on building up definitions and theorems based

on complete knowledge of a joint probability distribution. However, the higher-

level reasoning often pursued by humans in their assessment of uncertainty and risk

often has little or no basis in numerical combinations of a huge number of probabil-

ity estimates. Nevertheless. current practice in risk assessment often assumes that

such rock-bottom numbers must be obtained or estimated. by some means, before

uncertain inference can proceed.

We have outlined three recent approaches to uncertain inference that stem from

the artificial intelligence tradition. Localizing the inferences allows us to forget

about many of the numbers involved, but at the expense of making quite unreliable

inferences at times. Causal nets reduce some of the complexity of the problem,

can support automated qualitative reasoning about uncertainty, and are faithful to

the cause/effect distinction which permeates uncertain reasoning. Dempster-Shafer

theory allows uncertain reasoning to proceed on a different level, on the level of

sets of likely scenarios rather than sets of variables and their values, and as a result
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greatly reduces the effort in translating human intuition into an automated system,

and has a much more intuitively satisfying treatment of ignorance.

The ability to automate each of these approaches, to embody their inference

structure into a computer program. has the potential for even greater rewards. A

long tradition of machine learning has found that often a computer-generated analy-

sis can be superior to human intuition. A strong example is provided f Michalski's

expert system (Michalski and Chilausky. 1980). Michalski and his colleagues we-it

through a long consultation phase with a human expert in soybean pathology in an

effort to build an expert systen. -apable of diagnosing soybean diseases. Michal-

ski thcu used a machine learning system to build a second expert system solely

from data concerning soybean diseases and their symptoms; in other words, he used

another Al program, a learning program. to extract the rules used by the second

expert system. Both expert systems were then tested on new cases. The set of rules

produced by the human pathologist correctly identified only 83% of the new dis-

eases. wixile the set of rules produced by the computer program correctly identified

99.5%, of the new cases. "... plant pathologists are now using the machine-indiced

rules for their routine diagnoses" (Firebaugh. 1938).

A recent study of the future of computer science and engineering (CS&E) by

a committee of the National Research Council concluded that recent advances in

CS&E were not readily available to many other disciplines, and ca!:ed on CS&E

to increase its interactions with other disciplines. Among the top priorities for the

future of CS&E they listed:
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"* Increase its contact and intellectual interchange with other disci-

plines ...

"* Increase the number of applications of computing and the quality of

existing applications in areas of economic, commercial. and social

significance ...

"* Increase traffic in CS&E-related knowledge and problems among

academia, industry, and society at large, and enhance the cross-

fertilization of ideas in CS&E between theoretical underpinnings

and experimental experience

(Committee to Assess the Scope and Direction of Computer Science and

Technology, NRC, 1992, p. 34)

This paper is an attempt to initiate a dialogue between CS&E professionals versed

in many techniques of automated reasoning under uncertainty and the practitioners

of risk assessment nationwide. Each of the approaches sketched here has great

potential in risk assessment, particularly in automated software tools which may

soon form a critical part of the risk analyst's repertoire.
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Legends for Figures

Figure 1. Basic probability model. Each path from left to right represents a

combination of the variables A, B, C, and D. Conditional probabilities lie along

arrows, joint probabilities are found at the extreme right hand side.

Figure 2. A case in which one cause (high temperature) can lead to different

effects in different circumstances. The conditional probability alone of low dissolved

oxygen, given high temperature, does not allow an inference from high temperature

to low dissolved oxygen.

Figure 3. Bayesian inference takes account of cause and effect by distinguish-

ing inferences based on causes (7r inferences) from inferences based on effects (A

inferences).

Figure 4. A causal loop that must be handled carefully in Bayesian inference,

even if 7r anf A inferences are distinguished.

Figure 5. Dempster-Shafer theory calculates probability over sets of hypothe-

ses. not single variable values. This illustration shows all possible subsets of three

hypotheses.
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A common as3umption in environmental toxicology is that after the
initial stress, ecosystems recover to resemble the control state. This
assumption may be based more on our inability to observe an ecosystem
with sufficient resolution to detect differences, than reality. This
study compares the dynamics of the effects of the water soluble fraction
(WSF) of both Jet-A and JP-4 using the Standard Aquatic Microcosm (SAM)
using several types of multivariate analysis.

Two SAM experiments have been completed using concentiations of
0.0, 1, 5 and 15 percent WSF. The effects of the WSF on the microcosm
communities were subtle. Among the more interesting effects were the
shifts in time of population peaks and some other variables compared to
reference microcosms. In both experiments, multivariate analysis was
able to differentiate oscillations that separate the treatments from
the reference group, followed by what would normally appear as recovery,
followed by another separation into treatment groups as distinct from
the reference treatment. These patterns generally were not detected by
conventional analysis.

Two sets of Llated explanations exist for the observed
phenomenon. First, the addition of the toxicant initiates an alteration
in the community so that the quality of the food resources for the later
successional stages is significantly different from the control. This
difference in resource quality and quantity leads to the repeated and
replicated oscillations. The second explanation is that the
oscillations are the result of the intrinsic chaotic behavior of
population interactions, of which the alteration of detrital quality is
but one of many. The initial impact of the toxicant re-set the dosed
communities into different regions of the n-dimensional space where
recovery may be an illusion due to the incidental overlap of the
oscillation trajectories occurring along a few axes. Some of the
implications of non-linear or chaotic dynamics upon the prediction of
ecological risk are discussed.

Key Words: Standardized Aquatic Microcosm, jet fuel, non-linear
dynamics, nonmetric clustering and association analysis, risk assessment

1Institute of Environmental Toxicology and Chemistry, Huxley College of
Environmental Studies and
2 Computer Science Department, Western Washington University, Bellingham,
WA 98225.
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DiTRODUCTION
Over the last 15 years a variety of multispecies toxicity tests

have been developed with the hope that in doing so, the increased
complexity of the test would recult in a more realistic comparison to
community-level responses to the toxicant. "iowever, the addition of
more than one species, and the generally longer time periods associated
with these multispecies tests, also result in much more complex data
sets. Distinguishing toxicant effects from other community-level
changes has become one of the most critical obstacles to the
interpretation of multispecies data sets.

Multispecies toxicity tests are usually referred to as microcosms
or mesocosms, although a clear definition of the size or complexity to
distinguish these terms has not been put forth. In the Standardized
Aquatic Microcosm (SAM) developed by Taub and colleagues (Taub 1969,
1976, 1988, 1989, Taub and Crow 1978, Crow and Taub 1979, Taub et al.
1980, 1987, 1988, Kindig et al. 1983, Conquest and Taub 1989) the
physical, chemical, and biological components are defined as to species,
media and substrate. The SAM system has undergone round robin testing
(Conquest and Taub 1989) and has been used with a variety of toxicants
and degradative organisms (Landis et al. 1989, 1993).

One of the major difficulties in the evaluation of multispecies
toxicity tests has been the difficulty in the analysis of the large data
set on a level consistent with the goals of the toxicity test.
Typically, the goals of the multispecies toxicity test are twofold:

* to detect changes in the population dynamics of the individual
taxa that would not be apparent in single species tests; and,

0 to detect community-level differences that are correlated with
treatment groups thereby representing a deviation from the control
group.

A number of methods have been developed in an attempt to satisfy
the goals of multispecies toxicity testing. Analysis of variance
(ANOVA) is the classical method to examine single variable differences
from the control group. However, because multispecies toxicity tests
generally run for weeks or even months, there are problems with using
conventional ANOVA. These include the increasing likelihood of
introducing a Type II error (accepting a false null-hypothesis),
temporal dependence of the variables, and the difficulty of graphically
representing the data set. Conquest and Taub (1989) developed a method
to overcome some of the problems by using intervals of non-significant
difference (IND). This method corrects for the likelihood of Type II
errors and produces intervals that are easily graphed, facilitating
further analysis. The method is routinely used to examine data from SAM
toxicity tests, and it is applicable to other multivariate toxicity
tests. The major drawback of the IND is the limitation of examining
one variable at a time over the course of the experiment. While this
method addresses the first goal in multispecies toxicity testing, listed
above, it ignores the second. In many instances, coumunity-level
responses are not as straightforward as the classical predator/prey or
nutrient limitation dynamics, that are usually selected as examples of
single-cpecies responses representing complex interactions.

Multivariate methods have proved promising as a method of
incorporating all of the dimensions of an ecosystem. One of the first
methods used in toxicity testing was the calculation of ecosystem strain
developed by Kersting (1984, 1985, 1988) for a three compartment
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microcosm. This method has the advantage of using all of the measured
parameters of an ecosystem to look for treatment-related diffprences.
At about the same time, Johnson (1988a, 1988b) developed a multivariate
algorithm using the n-dimensional coordinates of a multivariate data set
and the distances between these coordinates as a measure of divergence
between treatment groups. Both of these methods have the advantage of
examining the ecosystem "3 a whole rather than by single variables, and
can track such processes as succession, recovery and the deviation of a
system due to an anthropogenic input.

However, a major disadvantage of both these methods, and of many
conventional multivariate methods, is that all of the data are often
incorporated without regard to the units of measurement, or to the
appropriateness of including all variables in the analysis. Random
variables indiscriminately incorporated into the analysis, may
contribute so much noise that they overshadow variables that do show
treatment-related effects.

Ideally, a multivariate statistical test used for evaluating
complex data sets will have the following characteristics:

0 It will not er-mbine counts from dissimilar taxa or other variable
classifications by means of sums of squares, or other ad hoc
mathematical techniques.

It will not require transformations of the data.

It will work without modification on incomplete data sets.

It will work without further assumptions on different data types.

* Significance of a variable to the analysis will not be dependent
on the absolute size of its count, s3 that taxa having a small total
variance, i.e. rare taxa, can compete in importance with comon taxa,
and taxa with a large, random variance will not automatically be
selected, to the exclusion of others.

• It will provide an integral measure of the quality of the
analysis, i.e. whether the data set differs from a random collection of
points.

* It will, in some cases, identify a subset of the variables that
serve as reliable indicators of the physical and biological environment.

Recently developed for the analysis of ecological data, nonmetric
clustering is a multivariate derivative of artificial intelligence
research, that satisfies all these criteria and has the potential of
circumventing many of the problems of conventional multivariate
analysis.

In this paper, we use three multivariate techniques to compare
patterns in the data sets from two SAM toxicity tests using turbine
fuels. The multivariate techniques include two conventional tests based
on the ratio of multivariate metric distances (Euclidean distance and
cosine of the vector distance), and one relatively new program, RIFFLE,
which employs nonmetric clustering and association analysis (Matthews
and Hearne 1991). All three of the multivariate techniques have proven
useful in analyzing complex ecological data sets (Matthews et al. 1991a,
1991b). Of the three, only nonmetric clustering meets all of the
criteria listed above (Matthews and Matthews 1991).
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EZIn lMNUTAL )ruTZBW

All chemicals used in the culture of the organisms and in the
formulation of the microcosm media were reagent grade or as specified by
the ASTM method.

Jet-A was provided by Fliteline Services of Bellingham, Washington
and was refined by Chevron. The sample was obtained from the sample
valve used for quality control. The shipment lot was recorded and is on
file. JP-4 was supplied by the U. S. Air Force Toxicology Laboratory at
Wright Patterson, AFB, Ohio.

Water Soluble Fractions
The water soluble fraction was prepared in glassware washed in

nonphosphate soap, rinsed, then soaked in 2N HCl for at least one hour,
rinsed ten times with distilled water, dried and finally autoclaved for
30 minutes. Microcosm medium, T82MV, acted as the diluent for the
water fraction of the WSF.

Twenty five mL of fuel is added to the two liter separatory
funnel, and is agitated as follows: [1] shake separatory funnel for
five minutes, releasing built up pressure as necessary; (2] allow funnel
contents to remain undisturbed for 15 minutes; [3] shake contents for
five minutes, allow to stand 15 minutes; (4] continue same pattern for a
total time of one hour; and finally [5] allow separatory funnel contents
to remain undisturbed for eight hours. At the end of this procedure the
mixture was allowed to stand overnight. The next day all but 100 mL of
T82MV/water soluble fraction of jet fuel mixture from the separatory
funnel (leaving the lighter, insoluble fuel mixture in the flask) was
drained into a cleaned, sterile 1 liter amber glass bottle and capped
with a Teflon-lined screw cap. The NSF was used within 24 hours or
stored at 40C for no longer than 48 hours before use as the toxicant
mixture.

GAa Chrnmatogrgahy of WSE

This protocol utilizes a Tekmar LSC 2000 Purge and Trap (P&T)
concentrator system in tandem with a Hewlett Packard 5890A Gas
Chromatograph with a Flame Ionization Detector (FID) (ASTM D3710, D2887,
Westendorf 1986). Instrument blanks and deionized distilled water
blanks are used to verify the P&T and GC columns cleanliness prior to
analysis of samples. A five mL sample is injected into a five
milliliter sparger, purged with pre-purified nitrogen gas for eleven
minutes and dry purged for four minutes. Volatile hydrocarbons, purged
from the sample and collected on the Tenax/Silica Gel column, are
desorbed at 180 0 C directly onto the gas chromatograph SPB-5, 30m x 0.53
mm, ID 1.5pm film, fused silica capillary column. The column, at 350 C,
is held at that temperature for two minutes, increased to 225 0 C at
12 0 C/min and held at that temperature for five minutes. A Spectra-
Physics 4290 Integrator records the FID signal output of the volatile
hydrocarbons that have been separated and eluted from the column by
molecular weight. A comparison is then made of the sample chromatograph
to n-paraffin and n-naphtha chromatograph standards for sample
concentration determinations.

I•ntioatlnn and uianti4f4r-ntnn of = Frantiong
Qualitative identification of some components in the NSF were

determined using a Simulated Distillation (SINDIS) Calibration Mixture.
The ASTM Method D3710 Qualitative Calibration Mixture is the standard



5)Draft Report, Please do not cite or quote

test method for determining the Boiling Range Distribution of Gasoline
and Gasoline Fractions by Gas Chromatography. This mixture was used as
a calibration standard to determine the retention times for each known
component in the mixture against which unknown components, in the WSF of
the fuel mixture, were compared and identified.

SAM Prntpcnp1

The 64-day SAM-protocol previously has been described (ASTM
E1366). Briefly, the microcosms were prepared by the introduction of
ten algal, four invertebrate, and one bacterial species into 3L of
sterile defined medium. Test containers were 4 L glass jars. An
artificial sediment consisting of 200 g acid washed silica sand,
cellulose and 0.5 g of ground chitin is autoclaved in the
experimental jar; immersed in a water bath to a point above the level
of the sediment during sterilization to prevent breakage.

Numbers of organisms, dissolved oxygen (DO) and pH were determined
twice weekly. Room temperature was 20 0 C ± 20. Illumination was 80.0
A•n-2 sec-1 PhAR with a range of 78.6-80.4 and a 12/12 day/night cycle.

Two major modifications were made to the SAM protocol. The first
was the means of toxicant delivery. Test material was added on day 7 by
stirring each microcosm, removing 450 mL from each container and then
adding appropriate amounts of the WSF to produce concentrations of 0, 1,
5 and 15 percent WSF. After toxicant addition, the final volume was
adjusted to 3L. No attempt to filter and retain the organisms withdrawn
during the removal of the 450 mL was made prior to toxicant addition.
All graphs and statistical analysis start with the next sampling day,
day 11. The second modification was the substitution, in the JP-4
experiment, of Tetrahymena thermophila BIV for the hypotrichous ciliate.
The hypotrichous ciliate was becoming increasingly difficult to culture,
very likely due to the age of the clone. The results of the JP-4 study
demonstrated the suitability of the Tetrahymena for inclusion in the
protocol.

Data JAnalvsis
All data were recorded onto standard computer entry forms and

checked for accuracy. Parameters calculated included the concentrations
of each of the species, DO, DO gain and loss, net
photosynthesis/respiration ratio (P/R), pH, algal species diversity,
algal biovolume, and biovolume of available algae. The statistical
significance of these parameters, compared to the controls, was also
computed for each sampling day using the IND plots developed by
Conquest. The net photosynthesis/respiration ratio is not derived using
1 4 C methods but by comparing oxygen concentrations before lights on, at
the end of the photosynthetic period just before lights off, and then at
the next morning, as specified in the standard protocol. The
photosynthesis/respiration ratio was then determined by incorporating
these measurements.

The multivariate methods used in the analysis include cosine and
vector distances and nonmetric clustering. All of these methods have
been previously described (Matthews et al. 1991b, Landis et al. 1993)
and are reviewed in this volume. Variables used in the multivariate
analysis are presented in Table 1.
RESULTS

Persistence of the fuels. In the case of both WSFs, within three
weeks after dosing the original material had been volitilized or
degraded. In the case of JP-4, benzene, 2,4 dimethylpentane,
ethylbenzene, 2-methylpentane, 2-methylpropane, o-xylene and toluene,
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TABLE 1. int i eparameters used in the multivariate statistical teStm.

Biotic variables such as diversity, available biovolume, and total
algal biovolume are not used since they are derived from and therefore
not independent of the variables listed below.

jet A JP4
Anabaena Anabaena
Ankistrodesmus Ankistrodesmus
Chlamydomonas Chlamydomonas
Chlorella Chlorella
Daphnia Daphnia

Ephipia Ephipia
Small Daphnia Small Daphnia
Medium Daphnia Medium Daphnia
Large Daphnia Large Daphnia

Hypotricha Tetrahymena
Lyngbya Lyngbya
Miscellaneous sp. Miscellaneous 3p.
Ostracod (Cyprinotus) Ostracod (Cyprinotus)
Philodina (Rotifer) Philodina (Rotifer)
Scenedesmus Scenedesmus
Selanastrum Selanastrum
Stigeoclonium Stigeoclonium
Ulothrix Ulothrix

were tracked using GC analysis during the course of the SAM experiment.
After week three, only 2-methylpentane and 2-methylpropane are
detectable. Since only the 2-methylpropane is present 672 hours after
dosing, this material may be the final biodegradative product of the
absorbed fraction of the WSF, and is being investigated in more detail.

Cnmparison of A Popal Poulation Dnamins-Highast Treatment. These
area graphs (Figure 1) show the contribution of each algal species to
the algal assemblage for the highest treatment concentration for each
experiment. In the Jet-A treatment the algal populations were highest,
reflecting the increased toxicity of the Jet-A to the daphnid
populations. In both experiments however, an algal bloom was observed
during the first 30 days of the experiment. At the end of the
experiment the numbers and composition of the algal assemblage were
similar, although the proportions of the species making up the
assemblage had some differences. Chlorella seemed to be a greater
constituent of the community in the JP-4 experiment.

Daphnid Populatfon DynAmins. The most direct effect of the jet
fuel upon the population dynamics of the daphnid populations was the
delay in daphnid reproduction (Fig. 2). Peaks were delayed in the
Treatment 4 microcosms in both instances. Daphnids were very important
in determining the clusters in the early part of each experiment but not
as important later. In both experiments two peaks of daphnid
populations are observed. The first reflects the presence of the
toxicant, the second occurs similarly in the dosed and not dosed
systems. Error bars are not shown for clarity.

Ontraeod PoRulation Dfvnamir. Ostracod populations did not
increase until late in each experiment (Fig. 3). In the Jet-A
experiment (A), the numbers started an increase between days 40 and 45.
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The experiment using JP-4 as a toxicant (B) did not see the increase in
ostracods until between days 50-55, approximately ten days later.
Consequently, the total numbers of ostracods observed were not as high
in the JP-4 microcosms. Note that the order of densities in the Jet-A
experiment followed a dose response pattern, as did the JP-4 experiment,
even with the lower total numbers. Conventional analysis did not
demonstrate significance, however non-metric clustering did indicate the
importance of the ostracods in determining clusters in both sets of
microcosm experiments.

Phllodina Pojuiation Dvnaming. Philodina did not become prevalent
in the microcosms until the second half of the experiment. One of the
major problems was the inherent variability in the sampling and in the
replicates. Organisms that reproduce rapidly can show large differences
in population sizes during the course of a sampling day. Although, in
the later stages of the microcosm experiments the dosed systems had a
generally larger number of the rotifers, the results were not
statistically significant using conventional IND plots. However, using
cluster analysis, Philodina were also determined to be an important
variable in defining clusters. This held true for both the Jet-A and
JP-4 experiments.

C m-arisons of 2H d=vnagx4 Of the Jet-A and JP-4 RxperimgntR.
Unlike the biotic variables, pH did reflect some of the the oscillations
detected by the cluster analysis (Fig. 4). In both the Jet-A and the
JP-4 experiments the highest concentrations demonstrated a statistically
significant difference, determined by the interval of non-significant
difference during the first 30 days of the experiment. The second
oscillation, between days 45 and 50, is not as clear since only one
sampling date demonstrated the statistically significant difference.
Type II error becomes a concern with so many comparisons, even with the
corrections incorporated into the IND plots.

Photos~vthesis/Resniration Ratin. The photosynthesis/respiration
ratio reflects the oscillations seen in pH and the clustering analysis
for the first 30 days and then only for the Jet-A water soluble
fraction. In the Jet-A experiment, a second deviation from the IND plot
was noted in the period corresponding to the second oscillation, but the
result is difficult to distinguish from a type II error. In the JP-4
experiment, the IND plots are large, reflecting the variance in those
sampling days. As an "emergent propertyu, it is not clear if the P/R
ratio provides any more information in this experiment than the
clustering based upon the biotic components.

Oscillations in Community Dynaming Ohrd n hoth thp Jot-A A
the JP-4 r2=priments. The Jet-A and the JP-4 SAM experiments both
displayed a series of oscillations; revealed by the three clustering
techniques employed in the analysis (Fig. 5). The first oscillation, as
defined by Cosine Distance common to each experiment, is due to the



10 1 O)Draff Report. Please do not cthe or quote

Ostracod Population Dynamics Jet-A
300-

oat teal-I

250 061 &ml-2
4-. Og taIM-3

200 

01W-

so. T

10 15 20 25 3 35 40 4 5 50 5 60 65

A Tim.e (Days)

Ostracod Population Dynamics JP-4
300.

250. -0-OtWs2

E

50

to t5 20 25 30 35s 40 45 50 55 So 65j

B Tine (Days)

FIG. 3--Ostracod population dynamics.



I 1)Draft Report, Please do not cite or quote

10 ~~pH Jet-A -

10

Re I

101s2i5t03 40 k 45 05 06

A06l (as

0~ --- U

% Ob
ft

10 15 20 25 30 35 40 45 50 5@5 60 65

A ~ Twn (Days)

pHB-

FIG.4--omprisns f p duingtheSA PHtuies



12 12)Draff Report. Please do not cthe or quote

Jet-A. Average Cosine Disance

101

110.1

1010 15 20 25 30 A5 4 45 50 55 go a5

Twoe (Dave)

JP-4, Average Cosinie Distance
100-

- 1**, TfENlO I
STramurvu 1 a TomuWa 2

- Trewmen I a Touuvmwe

10-10 15 20 25 ;0 35 40 45 50 55s 60 65

Towe (Days)
FIG. 5--Cosine Distances of the Treatment 1 to the dosed treatments in
the Jet-A and the JP-4 SAMs.



13 13)Draft Report, Please do not cite or quote

interaction of the daphnid population and the algae. The result is
statistically significant, as determined by the goodness-of-fit
confidence level, graphed by day in Fig. 6. In both experiments, the
oscillation is within the first 30 days of the SAM time-line.
Interestingly, the magnitude of the first oscillation, as determined by
Cosine Distance, is less in the JP-4 experiment, possibly reflecting the
reduced acute and chronic toxicity of the mixture.

A second series of oscillations, as measured by Cosine Distance,
occur in the last thirty days of each experiment. Again the
oscillations are statistically significant.

TABLE 2. Variable ranking by sucorss in determining clugtepr as defined

by nnnm-trin eluSt-ering. Variables such as Ankistrodesmus and the
Daphnia classes ranked highly in the course of this study. However,
reliance on any particular organism or a small combination of variables
would inadequately describe the dynamics of the system.

Jet-A JP-4

Variable Ranked Variable Ranked

Ankistrodesmus 12 Chlorella 8

M. Daphnia 11 S. Daphnia 8

Chlorella 9 Ankistrodesmus 6

Scenedesmus 7 Scenedesmus 5

S. Daphnia 6 Philodina 5

L. Daphnia 5 M. Daphnia 4

Ostracod 4 Lyngbya 4

Philodina 4 L. Daphnia 3

Selenastrum 4 Ostracod 3

Lyngbya 3 Selenastrum 3

Ulothrix 1

The participants in the conmnunity that contribute to these oscillations
are slightly different judging by the table of important variables
(Table 2). Unfortunately, the length of the SAM protocol is not
sufficient to conduct an analysis of the period and amplitude of the
oscillations. Another complication in examining the results is the
difficulty in making direct comparisons between experiments. Although
the Cosine Distance may be the same, the orientation of the angle can be
quite different.

DZSCU38IO
First, the apparent recovery or movement of the dosed systems

towards the reference or treatment 1 case may be an artifact of our
measurement systems that allow the n-dimensional data to be represented
in a two dimensional system. In an n-dimensional sense, the systems may
be moving in opposite directions and simply pass by similar coordinates
during certain time intervals. Positions may be similar but the n-
dimensional vectors describing the movements of the systems can be very
different. A representation of these dynamics is presented in Fig. 7.
The two systems intersect, although the vectors are quite different.
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The apparent recoveries and divergences may also be artifacts of
our attempt to choose the best means of collapsing and representing n-
dimensic Lal data into a two or three dimensional representation. In
order t represent such data it is necessary to project n-dimensional
data into three or less dimensions. As information is lost as the
shadow from a cube is projected upon a two dimensional screen, a similar
loss of information can occur in our attempt to represent n-dimensional
data. Not every divergence from the reference treatment may have a
cause directly related to it in time. Differentiating those events from
those due to degradation products or other perturbations is challenging.

Not only may system recovery be an illusion, but there are strong
theoretical reasons that seem to indicate that recovery to a reference
system may be impossible or at least unlikely. In fact, systems that
differ only marginally in their initial conditions and at levels
probably impossible to measure are likely to diverge in unpredictable
manners. May and Oster (1978) in a particularly seminal paper
investigated the likelihood that many of the dynamics seen in ecosystems
that are generally attributed as chance or stochastic events are in fact

Sy~lam Dosed *f

FIG. 7--Visualization of ecosystem dynamics to reflect a possible
interpretation of the impacts of the jet fuels.

deterministic. In fact, simple deterministic models of populations can
give rise to complex dynamics. Using equations resembling those used in
population biology, bifurcations occur resulting in several distinct
outcomes. Eventually, given the proper parameters, the system appears
chaotic in nature although the underl~ing mechanisms are completely
deterministic. Obviously, biological systems have limits, extinction
being perhaps the most obvious and best recorded. Another ramification
is that the noise in ecosystems and in sampling may not be the result of
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a stochastic process but the result of underlying deterministic, but
chaotic relationships.

These principals also apply to spatial distributions of
populations as recently reported by Hassell et al. (1991). In a study
using host-parasite interactions, a variety of spatial patterns were
developed using the Nicholson-Bailey model. Host-parasite interactions
demonstrated dynamics ranging from static 'crystal lattice' patterns,
spiral waves, chaotic variation, or e-ctinction with the appropriate
alteration of only three parameters within the same set of equations.
The deterministically determined patterns could be extremely complex and
not distinguishable from stochastic environmental changes.

Given the perhaps chaotic nature of populations it may not be
possible to predict species presence, population interactions, or
structural and functional attributes. Kratz et al. (1987) examined the
spatial and temporal variability in zooplankton data from a series of
five lakes in North America. Much of the analysis was based on
limnological data collected by Brige and Juday from 1925 to 1942.
Copepods and cladocera, except Bosmina, exhibited larger variability
between lakes than between years in the same lake. Some taxa showed
consistent patterns among the study lakes. They concluded that the
controlling factors for these taxa operated uniformly in each of the
study sites. However, in regards to the depth of maximal abundance f r
calanoid copepods and Bosmina, the data obtained from one lake had
little predictive power for application to other lakes. Part of this
uncertainty was attributed to the intrinsic rate of increase of the
invertebrates with the variability increasing with a corresponding
increase in rmax. A high rmax should enable the populations to
accurately track changes in the environment. Katz et al suggest that
these taxa be used to track changes in the environment. Unfortunately,
in the context of environmental toxicology, the inability to use one
"reference" lake to predict the non-dosed population dynamics of these
organisms in another eliminates comparisons of the two systems as
measures of anthropogenic impacts.

A better strategy may be to let the data and a clustering protocol
identify the important parameters in determining the dynamics of and
impacts to ecological systems. This approach has been recently
suggested independently by Dickson et al. (1992) and Matthews and
Matthews (Matthews et al. 1991b, Matthews and Matthews 1991). This
approach is in direct contrast to the more up-:al means of assessing
anthropogenic impacts. One classical approach is to use the presence or
absence of so called indicator species. This assumes that the tolerance
to a variety of toxicants is known and that chaotic or stochastic
influences are minimized. A second approach is to use hypothesis
testing to differentiate metrics from the systems in question. This
second approach assumes that the investigators know i priori the
important parameters to measure. Given that in our relatively simple
SAM systems that the important parameters in differentiating non-dosed
from dosed systems change from sampling period to sampling period, this
assumption can not be mads. Classification approaches such as nonmetric
clustering or the canonical correlation methodology developed by Dickson
et al, eliminates these assumptions.

These results presented in this report and by others reviewed
above and the implications of chaotic dynamics suggest that reliance
upon any one variable or an index of variables may be an operational
convenience that may provide a misleading representation of pollutant
effects and associateu risks. The use of indices such as diversity and
the Index of Biological Integrity have the effect of collapsing the
dimensions of the descriptive hypervolume. Indices, since they are
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composited variables, are not true endpoints. The collapse of the
dimensions that are composited tends to eliminate crucial information,
such as the variability in the importance of variables. The mere
presence or absence and the frequency of these events can be analyzed
using techniques such as nonmetric clustering that preserve the nature
of the dataset. A useful function was certainly served by the
application of indices, but the new methods of data compilation,
analysis and representation derived from the Artificial intelligence
tradition can now replace these approaches and illuminate the
underlying structure and dynamic nature of ecological systems.

The implications are important. Currently, only small sections of
ecosystems are monitored or a heavy Leliance is placed upon so called
indicator species. These data suggest that to do so is dangerous, may
produce misleading interpretations resulting in costly error in
management and regulatory judgments. Much larger toxicological test
systems are currently analyzed using conventional statistical methods on
the limit of acceptable statistical power. Interpretation of the
results has proven to be difficult, if not confusing. Application of
the approach and tools that proved successful in revealing the complex
dynamics of these small microcosms should prove useful in analyzing
larger toxicological test systems and field research.

com - $IONS
(I) In both of the experiment3, multiple oscillations of the dosed
treatment groups away from the reference treatment were observed using
multivariate statistics. The first oscillation is due to the
differential impact of the WSF of the jet fuels to the algae-daphnid
population dynamics. The following oscillations, although statistically
significant and seen in both experiments, is not as clear cut.

The divergence of the second oscillation may be due to two
separate mechanisms.

(a) A fluctuation due to the initial stress has occurred, but in such a
fashion that an incompletely dampened oscillation repeats. There has
been no fundamental alteration in the functioning of the ecosystem, and
the oscillations are a result of the inherent time lags and stochastic
factors governing the dynamics of the system.

(b) A fundamental aspect of the ecosystem has been altered so that the
repeated oscillations reflect the persistence of the impact. An
alteration in the detritus quality or in the community involved in the
recycling of detritus may have long term impacts as other nutrients
become limiting in the system. Nutrients are at low levels during the
second 30 days of a typical SAM experiment. This possibility could
include a fundamental and long lasting effect upon the system, contrary
to the first mechanism.

(2) A combination of multivariate analyses appear to be useful and
illuminating in assessing the long term dynamics of these systems. Each
has strengths that make multivariate analysis a strong methodology with
powerful advantages to conventional univariate methods.

(3) Although simple systems, the SAM experiments exhibits coztpIx
dynamics and behaviors. The protocol results in a persistent -vster.
with good replicability within an experiment, even with complex nec.ies
interactions.
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(4) Techniques that allow the reduction and visualization of even
these relatively simple multispecies toxicity tests should contribute to
our understanding of system dynamics and improve hazard assessment.

OWN WL- DITS
This research was funded by United States Air Force Office of

Scientific Grant No. AFOSR-91-0291 DEF.
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Abstract

Many techniques developed by computer scientists in the field of arti-
ficial intelligence (AT) are currently being used as standard, state-of-the-
art technology. These techniques have proven their value and validity in
medicine, geology, agronomy, and astronomy time and again, often beat-
ing human experts at their own game. We present here an analysis tool
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for multispecies data based on nonmetric clustering, an Al technique de-
veloped specifically to aid in the interpretation of complex ecological data
sets. This technique uses Al search to find an appropriate and meaningful
characterization of a multivariate system. After appropriately character-
izing the system in this fashion, the relationship between this character-
ization of the system and the critical environmental variables (pollution,
toxicity, etc.) can be quantitatively analyzed to aid in the assessment of
the effects of the environment on the system. A priori endpoints or indices
are not necessary; the data are allowed to determine the variables that
best separate treatment from controls. We have now tested this method-
ology over a series of multispecies toxicity tests using a variety of stressors.
During the initial blind testing the methodologies could pick treatment
groups with high accuracy. When knowledge of treatment group is avail-
able, oscillations in the similarity of the treatments to the controls are
apparent.

Much recent debate in toxicological studies has focussed on appropri-
ate endpoitns for multispecies toxicity tests and biomonitoring schemes.
We suggest that the search for endpoints appropriate to the entire field of
toxicity testing is a fruitless search. We recommend instead an approach
that standardizes the common sense approach: different situations, even
within a single experiment, call for different endpoints. Typically, the tox-
icologist, if called upon for an expert opinion, will examine multivariate
data, and extract from that data a few critical species. The behavior of
these species will give an adequate (though perhaps not complete) picture
of the toxic effects. Which species are selected, and whether it is their
mortality, behaviro, or biomass that is important, will always vary from
case to case. We call, therefore, for more research into the automation of
the process typically performed by the expert. The selection of species,
as well as other parameters, as significant for a particular experiment or
field study, can be done automatically by computer algorithms. To be
blind to the utility of these tools in the field of toxicology is to work by
hand, over and over again, problems which could be solved in a twinkling
with their aid.

1 Introduction

It has become a shibboleth in modem ecotoxicology that the field cannot
progress until ecologically significant endpoints are defined. Something along
the lines of an ecosystem level functional index, it is presumed, would be ideal,
telling us what numbers to measure, which mathematical formulae to use to boil
them down, and where the cutoff point is between healthy systems and troubled
ones. This would introduce 'objectivity" into what is now done with an intuitive
assessment by a human expert. The reality, however, is that the state of an eco-
logical community cannot possibly be captured on any linear scale, on the one
hand, and, on the other, that an approach to assessment using the traditional
human "best judgement" is doomed to failure by the innately incomprehensible
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complexity of the analysand. Fortunately, there is a middle ground for dealing
with complex systems. In other scientific domains, practitioners have long real-
ized their impotence in the face of massive multivariate data, and have resorted
to automated computerized tools for image processing, pattern recognition, and
dimensionality reduction. These tools are in widespread use, for example, in
medicine, astrophysics, particle physics, meteorology, and geology. The key to
their success is that the human expert and the software tool are partners in
the exploration of the data. The computer by itself, of course, has no semantic
understanding of the data. But, equally, the unaided human is blind to the
patterns implicit in the data. Increasingly sophisticated data visualization and
analysis tools are available on today's powerful desktop workstations, and the
practitioner who does not use them will soon be left behind.

Much of the work in computer-aided data exploration, however, has the
wrong focus for ecotoxicology. Data sets generated, for example, by meteoro-
logical models of a thunderstorm, typically have millions of data points densely
scattered through a well-defined three-dimensional model. The complexity is in
the sheer number of data points and their interactions. In ecologically interest-
ing situations, on the other hand, only a few dozen or hundred data points are
in hand, from widely separated places in space and time, and each point records
data on dozens or hundreds of species. This results in a relatively small number
of points scattered through the huge volume of n-dimensional space (where n
is the number of different species counted). Even a modest number of dimen-
sions raises severe problems for conventional analysis techniques, and human
intuition. For example, if some large number of points is scattered uniformly
over a 10-dimensional hypersphere with radius one, then a hypersphere inside,
of radius 3/4, will contain only 5% of the points. Clearly, sampling 10 or higher
dimensional space can miss important things. Further, a lot of the time data
points are missing, or incomplete.

The nature of the problem is that usually we have too much information.
Ten or twenty sampling points with, perhaps, fifty species, is underdetermined.
There is no way to draw meaningful conclusions about the nature of the com-
munity as a whole (all fifty dimensions), from the smattering of points. What
is required is data reduction, the dimensionality of the data has to be brought
down to the point where ten or twenty points can tell us something. One
methodology for this is based on projections of the data, such as factor analy-
sis, principal components analysis, correspondence analysis, or, more generally,
projection pursuit (Huber, 1985). There are many algorithms for finding good
projections, and even a suggestion that all projections be examined in a "grand
tour" of the data (Asimov, 1985). However, rotating at about 100 per second,
a reasonable speed for careful observation, a grand tour of only four dimensions
would take about three hours (Huber, 1985), and so computer-aided projections
are the only real alternative.

While such projections are valuable in reducing the dimensionality of the
data, they all suffer from a problem of comprehensibility. Since arbitrary linear
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and nonlinear transformations of the data matrix are allowed, the meaning of
the resulting two-dimensional projection can be obscure, and difficult for human
intuition to fathom.

The tradition of machine learning (ML), within artificial intelligence, has
been addressing these problems for some time. The goal of an MIL system is,
not only to identify patterns in the data, but to come up with an efficient and
intuitive characterization of them. Efficient and intuitive, in this context, imply
that the characterization is not unnecessarily complex, that it uses simple logical
combinations of descriptions rather than mathematical formulae, and that it is
expressed in terms of attributes that are not contrived. This has been formulated
as the comprehensibility postulate:

The results of computer induction should be symbolic descriptions of
given entities, semantic ally and structurally similar to those a human
expert might produce observing the same entities. Components of
these descriptions should be comprehensible as single "chunks" of
information, directly interpretable in natural language, and should
relate quantitiative and qualitative concepts in an integrated fashion
(Michalski, 1983).

It is the primary failing of traditional statistical approaches, as well as the "neu-
ral net" approach, to solving ML problems that they ignore the comprehensibil-
ity postulate. In this paper, we present nonmetric clustering, a specialization of
ML, faithful to the comprehensibility postulate, which we have been employing
fruitfully on a wide variety of ecosystems. After its details are explained, some
consequences for environmental policy making are outlined.

2 Machine Learning

As a simple example, consider the data in Table 1 (Quinlan, 1983). In this
set, we are given three "positive" individuals and five "negative" individuals
and their characteristics on three attributes. The problem is to come up with
a means of distinguishing the "positives" from the "negatives" based on height,
hair, and eye color. There are many possible ways of distinguishing them, but
one nice one might be:

Positives either have red hair, or blond hair and blue eyes.
Negatives either have dark hair, or blond hair and brown eyes.

There are several things to notice about this characterization of the positives
and negatives. First, the data are both categorical and numeric. The beauty
of ML approaches to these problems is that they apply equally well to either
kind of data. To make a regression, or linear discriminant, categorical data
would have to be numerically coded somehow. In an ML approach, numeric
attributes, such as height, are simply recoded into a number of discrete bins,
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Height Hair Eyes Class
short blond blue +
tall blond brown -

tall red blue +
short dark blue -

tall dark blue -

tall blond blue +
tall dark brown -

short blond brown -

Table 1: Data set problem for identifica and characterization.

such as small, medium, and large. Such categories can be as fine or as coarse
as desired, and in all events are more comprehensible than an uninterpreted
number. Second, not all the original attributes are used in the description.
Height, it turns out, is superfluous, and is omitted from the description. Third,
compound descriptions are created using logical operations, "and" "or" and
"not", rather than mathematical formulae. A linear discriminant, for example,
describes by adding up numbers and then determining if the result is greater
or smaller than some cutoff point. The logical descriptions are much more
natural and intuitive for humans, and lead to understanding of the data in
a way that mathematical combinations cannot. Fourth, even with only three
attributes and eight points, there are a lot of different logical descriptions that
have to be considered to get the best, or even a good, one. With real data sets
the combinatorial complexity of finding a description would rapidly swamp a
human investigator. A computer aid is essential. Fifth, no artificial attributes
are used. The use of "indices" or "ordination" techniques attempts to introduce
a new attribute, defined mathematically in terms of the original ones, and then
use the values of these indices or components to describe the classes. The ML
description uses the same attributes (height, hair, and eyes) that were used in
the design of the sampling program, and thus, the description of the classes
will have direct meaning to the investigator, without the need to learn a new
vocabulary. Such descriptions, which use simple logical combinations of the
original attributes, are called "conceptual" descriptions (Michalski and Stepp,
1983).

3 Nonmetric Clustering

Nonmetric clustering (NMC) is an ML tool designed to search for conceptual de-
scriptions of ecological data sets. The NMC methodology has been implemented
in a computer program called Riffle (Matthews and Hearne, 1991). Unlike the
simple example above, Riffle does not work from a preexisting set of class labels
(such as + and -). Given a data set, Riffle attempts to two things simultane-
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C1 A B C D E F C2
+ 1 2 1 2 2 1 +
+ 1 2 2 1 1 2 -
+ 1 2 1 2 2 1 +
- 2 1 2 1 1 2 -
- 2 1 1 2 2 1 +

- 2 1 112 1 1 2 1--I

Table 2: Synthetic data for nonmetric clustering, with two possible clusterings.

ously: Group the points into clusters (classes), and find the simplest possible
conceptual description of those clusters. Since the points are not previously as-
signed to classes, Riffle is free to give the points any class label at all. However,
the class labels must be such that they can be simply captured in a conceptual
description, based on the original attributes (measured parameters), and, fur-
ther, such that they, in turn, capture as much information as possible about the
original attributes.

Consider the synthetic data in Table 2, where six points have been sampled
for six attributes. One potential clustering, denoted C1, has two simple concep-
tual descriptions, each based on a single attribute, either A or B. C, D, E and F
can be regarded as superfluous for this clustering. Another potential clustering,
denoted C2, also has simple characterizations, but in terms of attributes C, D,
E, and F, with A and B as superfluous. While both clusterings have simple
conceptual descriptions, C2 should be preferred because it captures more infor-
mation about the points than C1. One way to express this algorithmically is
that there are more good conceptual descriptions of the classes in C2 than there
are of the classes in C1. The computer program Riffle will prefer C2 to C1 for
this reason.

To find the best clustering possible, for a given data set, the algorithm
works by examining a great number of possible clusterings, like CI and C2,
above, and numerically ranks their conceptual adequacy. All data points are
repeatedly reassigned to clusters, and then the conceptual association between
clusters and attributes is reevaluated. When an assignment of points to clusters
is found that outranks all others, it is reported as the most natural clustering.

We will now briefly discuss how conceptual adequacy is ranked, and also
make some remarks on the particular strategy used in Riffle to convert numeric
to categorical variables.

3.1 Numerically ranking conceptual descriptions

To begin with, assume all attributes are categorical. Nonmetric clustering mea-
sures the association between a clustering (which, itself, is a categorical variable)
and another categorical variable by means of a contingency table test. A fre-
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Al A2 A3
131 5 3 1
B2 1 4 2
B3 7 0 5

Table 3: A contingency table to illustrate calculation of Guttman's A.

quency table of cluster-number vs. categorical-value is set up, and the number
of data points in each cell is counted in order to measure the association be-
tween cluster and variable. The most famous contingency table test is probably
the X2 test, but the X2 test has some undesirable properties when it comes to
interpretation and comprehensibility. Nonmetric clustering uses Guttman's A
to measure the association in the table (Goodman and Kruskal, 1954; Goodman
and Kruskal, 1959; Goodman and Kruskal, 1963; Goodman and Kruskal, 1972).

Guttman's A is a measure defined on the basis of "optimal predictions".
Consider, for instance, the contingency table represented in Table 3. Twenty-
eight individuals have been sampled, and their values on attributes A and B
have been tabulated. For concreteness, A can be regarded as "height" and B
as cluster-number. A larger sample size would always be desirable, but we have
no recourse other than to regard the proportion of points found in any cell as
the best estimate of the probability of finding a new point also to be in that
cell. Now suppose we need to predict which value on attribute B a new sample
is likely to have. In the absence of any further information, there are nine B l's,
seven B2's, and twelve B3's, so we would guess B3, and expect to be right about
12 out of 28 -'-.Les, giving us an error expectation of 16 out of 28, or about 57%.
We will call this the absolute error rate of B. Now, however, suppose we are
given a new data point, and are told its value for attribute A. How will we
predict B, and what will our expected error rate be when conditioned on this
knowledge? Well, 13/28 of the time the new point will be Al, and we should
then guess B3, and expect to be right 7/13 of the time. Similarly, 7/28 of the
time it will be A2, and we will guess B2, and be right 4/7 of the time, and
8/28 of the time it will be A3, we guess B3, and are right 5/8 of the time.
Predictions of B conditioned on A, then, should be correct (13/28)(7/13) +
(7/28)(4/7)+(8/28)(5/8) ; 57% of the time, and the error rate of B conditioned
on A is 43%. The reduction in error is 57 - 43, and the proportional reduction
in error is (57 - 43)/53 ;, 26%. In comprehensible terms, we expect to be
wrong about 26% fewer times if we know A. The proportional reduction in error
when predicting A conditioned on B can be computed similarly. The absolute
error rate of A is (28 - 13)/28 ;z 54%, the error rate of A conditioned on B is
1 - [(9/28)(5/9) + (7/28)(4/7) + (12/28)(7/12)J ;z 43%, and the proportional
reduction in error is (54 - 43)/54 2z 20%. Each of these proportional reductions
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in error is a measure of how well knowledge of one attribute aids the prediction
of the other. A symmetric measure of association can be obtained by simply
averaging the two conditioned measures, giving the symmetric A. of 23%.

Obviously, the more strongly two attributes are associated, the higher the
value of A, and vice versa. Some other properties of A (Goodman and Kruskal,
1954) are:

\ A lies between 0 and 1, inclusive, except when the entire population lies
in a single cell of the table, in which case it is indeterminate.

\ A is 1 if and only if all the population is in cells no two of which are in the
same row or column.

* Independence is sufficient, but not necessary, for A to equal 0.

* A is unchanged by permutations of rows or columns.

Elsewhere we have found A to be an excellent measure of qualitative association,
in that it accords well with human intuitions and is much more "stable" than
X2 (Chen, 1992). Using A to calculate the association between cluster-numbers

and categorical attribute values is faithful to the comprehensibility postulate:
an attribute is a good description of a clustering if knowledge of the attribute
helps predict cluster, and vice versa.

3.2 Integrating qualitative and quantitative data

The frequency table approach works well for categorical variables, but what
about numeric variables? Noumetric clustering takes a pragmatic approach to
these: if we assume that the data are going to be adequately described by a
clustering into a finite number of clusters, then there are really only a finite
number of values of a numeric parameter to consider, one for each cluster. All
other variations in a numeric parameter can be assumed to be due to variance
within the clusters. Accordingly, we can divide up the range of a numeric
parameter into discrete parts. We can do this nonmetrically by simply choosing
quantile points, but a more flexible arrangement allows the "splits" between
categorically different values to be selected by the algorithm as it runs. How
this is accomplished is illustrated in Figure 1. Here we have marked two clusters
with open and filled circles, and the categorical division of two dimensions into
"high" and "low" values are shown by the dividing gray lines. The point marked
with an "X" is troublesome, as it does not fit well with either of the two clusters,
and keeps us from obtaining a A value of 1.0 for this data set. We could move the
vertical line to the right, to try to include X in one cluster, but that would raise
more problems by the inclusion of some points from the other cluster. Similar
problems occur if we try to raise the horizontal line.

The computer program Riffle will keep adjusting these split lines up and
down to achieve better associations between cluster and numeric attribute. In
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Figure 1: Twelve data points in two dimensions. Clusters are indicated by open
and filled circles. Split values shown by gray lines. The point marked with an
"X" cannot be included in either cluster by moving the split values without
introducing further problems.

other words, what counts as "small" or "large" can be redefined by the algorithm
as it investigates the data. At the same time, the algorithm is free to reassign
the points themselves to different clusters. Both of these reinterpretations of
the data are tried over and over, to maximize \. The algorithm stops when it
cannot improve the association between clusters and attributes any more, by
any of its tricks.

This clustering methodology has a number of advantages over traditional
clustering methods:

"* It does not combine counts from dissimilar taxa. by means of sums of
squares, or other ad hoc mathematical techniques.

"* It does not require transformations of the data, such as normalizing the
variance.

"* It works without modification on incomplete data sets. Since each At-
tribute has its \-association with the clustering evaluated independc-ntly,
the fact that some points have some values for some attributes, and other
points for other attributes, is irrelevant. Attributes are not directly com-
bined.

"* It can work without further assumptions on different data types (e.g.,
numeric, categorical, species counts, presence/absence data, etc.).
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" Significance of an attribute to the analysis is not dependent on the absolute
size of its count. For instance, a taxon having a small total variance, such
as rare taxa, can compete in importance with common taxa, and taxa
with a large, random variance will not automatically be selected, to the
exclusion of others.

"* It provides an integral measure of "how good" the clustering is, i.e.
whether the data set differs frcm a random collection of points, by means
of the size of the A values for each attribute.

" It can, in some cases, identify a subset of the attributes that serve as reli-
able indicators of the physical environment. In our research the indicator
species selected by Riffle often proveu to be more reliable than indicators
based on a linear discriminant (Matthews et al., 1991a; Matthews et al.,
1991b).

The major disadvantage of the Riffle program is that, in order to find a clustering
of the data points with the desirable qualities listed above, a massive search
through thousands of potential clustering candidates is made before settling on
the "right" one. Even after this search, there is no guarantee that Riffle finds
the optimal clustering, in the sense outlined above. However, in our research,
Riffle does find an excellent dustering in a reasonable amount of time. For larger
datasets, supercomputers and/or more heuristic searches may be required.

4 Association Analysis: a Significance Test
from the Clustering

If the data analyzed have natural groups, such as treatment groups or sites,
a significance test can be derived from the known groups and the generated
clusters. Under the null hypothesis, clusters generated from the data will have
no association with the known treatment groups. Thus, if the generated clusters
closely match the treatment groups, with less than one or five percent probability
under the null hypothesis, then a significant effect has been found. We have
used nonmetric clustering and association analysis on a variety of multivariate
experiments and find it to be comparable in sensitivity to many metric tests that
make more assumptions about the underlying distributions of the data (Landis
et al., forthcoming).

5 Implications for Ecological and Ecotoxicolog-
ical Tests

The fact that nonmetric clustering and association analysis (NCAA) adheres
to the comprehensibility postulate has numerous consequences for the analysis
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of ecological data, and for policy. When establishing policy for mitigation or
restraint, the ecologist is forced into the position of deciding what is "good" and
what is "bad," or natural vs. unnatural, or pristine vs. polluted, or healthy vs.
unhealthy. The development of various ecological indicators (diversity indices,
indicator species, biomarkers, etc.) has proceeded by fits and starts, primarily
because ecosystems are complex and rarely reproducible, and so a simple divi-
sion into good and bad ecosystems is not feasible. Instead, each new system
must be approached on its own terms, and ecological and toxicological experts
must begin to understand it afresh and derive new concepts each time.

A computational induction from the data alone using ML techniques, on the
other hand, has a number of advantages.

1. Machine learning is free from prejudice. Too often natural ecologists are
forced to rely on traditional indicator species, or traditional measures of
diversity, rather than taking a fresh look at each new system. Machine
learning software does not remember the past.

2. Machine learning is adaptable. There is no need to establish policy based
on a fz w preselected species, or on one mathematical technique. A variety
of techniques, and all possible species, can be incorporated into a single
ML tool which will sort through them and return with an objective pic-
ture of the ecosystem based on the most interesting species and the most
informative tools.

3. Machine learning is interactive. Because the concepts derived by com-
putational induction are faithful to the comprehensibility postulate, they
can be examined by human experts. The machine is not a "black box"
which must either be trusted implicitly or thrown out completely. Refine-
ments in the ML algorithm can be visualized, based on experiments, and
reincorporated into future generations of the ML computational tools.

4. Machine learning is not constrained like expert systems. Unlike expert
systems, which attempt to encapsulate a particular human's expertise in
a computer system, ML tools attempt to derive new expertise, new cate-
gories and concepts, derived from the data themselves. The only constraint
on an MEL system is the comprehensibility postulate, requiring that all new
ideas be expressible in human terms. Beyond that, anything goes.

5. Machine learning is inexpensive. One of the primary motivations behind
the surge of interest in expert systems was that a computer program rep-
resents a large initial investment, but a very small marginal cost subse-
quently, compared to professional consultation with a human expert. ML
systems, once developed, are marketed like any other software, and can
be duplicated and reused, in identical form, on any site.

Because of these advantages, we can recommend a new direction in eco-
toxicological policy. There is a middle ground between reliance on completely
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objective, simple, numerical cutoffs, on the one hand, and largely subjective,
naked faith in consensus human judgement, on the other. Rather, policy must
be made only after extensive interaction between human experts and their MEL
assistants. Without MEL and the associated computational induction, the human
expert cannot be sure that some important concepts not are being overlooked.
The human's compromises and policies should only be made after the minimal
step of consulting with an MEL system. Such man-machine consultations must
become part of policy, or else we are condemned to base judgements on only
partial information, on oblique, narrow, and slanted views into the data. We
therefore call for ecotoxicologists to review the large ML literature, and be-
gin to establish standards for human-computer interactive analysis of ecological
systems.

6 Future Work: Dynamic Ecosystem Change

While our system of nonmetric clustering and association analysis does well
with a variety of environmental data, we are currently seeking a much-needed
extension of our ideas. At present, each data set is treated statically, as an inde-
pendent point in time. In reality, environmental systems are extremely sensitive
to their history. What is needed is a conceptual description of ecological systems
that pays particular attention to the dynamic nature of systems over time. On
the one hand, time could simply be viewed as another measured attribute; how-
ever, it is obvious that this attribute holds a special place. Time series analysis,
as it is currenly practiced, is almost entirely a univariate technique, primarily
concerned with trends and cycles. What is required is a multivariate technique
that makes sense of multivariate trends in patterns. One straightforward ap-
proach is to consider the state of a multivariate system as a multivariate vector,
and the change over time as simply another vector connecting the state at one
time with the state at another. In this view, we could define velocity, curvature,
torsion, and a host of other vectors which would, in some sense, characterize
the changes of the system over time. However, we must look instead for a de-
scription of change that does not violate the comprehensibility postulate. For
a conceptual clustering, we must look for a conceptual shift, and have a con-
cise notion of what this means. When we have decided the terms under which
conceptual shifts are described, we can then build an ML, tool that will assist
us in our search for understanding. We believe that a conceptual shift in the
character of a community or ecological system will be far more significant than
any simple change in the numbers of species.
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7 Conclusion

Machine learning promises to revolutionize the practice of environmental pol-
icy, by making the marriage of human and computer expertise a reality. We
anticipate computerized "policy assistants" that will create an atmosphere of
understanding and familiarity with the most difficult data. We have presented
here, as an illustration, our own technique of nonmetric clustering and associ-
ation analaysis, which we have used repeatedly in gaining deeper insights into
ecological and toxicological data. All analysts who use only fixed methodologies,
or only intuition, or both, in examining complex data, do so at their peril. The
computer tools of machine learning present a new alternative to past practices,
one which is at the same time more friendly and more objective, and one which
will, sooner or later, be indispensible to our field.

References

Asimov, D. (1985). The grand tour. SIAM Journal of Scientific and Statistical
Computing, 6:128-143.

Chen, C. (1992). The measurement of clustering tendency in machine learning.
Master's thesis, Western Washington University, Bellingham Washington.

Goodman, L. A. and Kruskal, W. H. (1954). Measures of association for cross
classifications. Journal of the American Statistical Association, 49:732-764.

Goodman, L. A. and Kruskal, W. H. (1959). Measures of association for cross
classifications ii: further discussion and references. Journal of the American
Statistical Association, 54:123-163.

Goodman, L. A. and Kruskal, W. H. (1963). Measures of association for cross
classifications iii: approximate sampling theory. Journal of the American
Statistical Association, 58:310-364.

Goodman, L. A. and Kruskal, W. H. (1972). Measures of association for cross
classifications iv: simplification of asymptotic variances. Journal of the
American Statistical Association, 67:415-421.

Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13:435-475.

Landis, W. G., Matthews, R. A., Markiewicz, A. J., and Matthews, G. B.
(Forthcoming). Multivariate analysis of the impacts of the turbine fuel
jp-4 in a microcosm test with implications for the evaluation of ecosystem
dynamics and risk assessment. Ecotozicology.

Matthews, G. and Hearne, J. (1991). Clustering without a metric. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13(2):175-184.



Nonmetric Clustering ASTM 1993 Page 14

Matthews, G. B., Matthews, R. A., and Hachm~iller, B. (1991a) Mathematical
analysis of temporal and spatial trends in the benthic macroinvertebrate
communities of a small stream. Canadian Journal of Fisheries and Aquatic
Sciences, 48(11):2184-2190.

Matthews, R. A., Matthews, G. B., and Ehinger, W. J. (1991b). Classifica-
tion and ordination of limnological data: a comparison of analytical tools.
Ecological Modelling, 53:167-187.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Ma-
chine Learning, An Artificial Intelligence Approach, pages 83-134.

Michalski, R. S. and Stepp, R. E. (1983). Learning from observation: Conceptual
clustering. Machine Learning, An Artificial Intelligence Approach, pages
331-363.

Quinlan, J. R. (1983). Learning efficient classification procedures and their
application to chess end games. In Michalski, R. S., Carbonell, J. G.,
and Mitchell, T. M., editors, Machine Learning, An Artificial Intelligence
Approach, pages 463-482. Morgan Kaufmann, Los Altos, California.


